cleaned up obstacle generation
This commit is contained in:
@@ -1,15 +1,17 @@
|
|||||||
function obj = initialize(obj, objectiveFunction, domain, discretizationStep)
|
function obj = initialize(obj, objectiveFunction, domain, discretizationStep, protectedRange)
|
||||||
arguments (Input)
|
arguments (Input)
|
||||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||||
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
|
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
|
||||||
domain (1, 1) {mustBeGeometry};
|
domain (1, 1) {mustBeGeometry};
|
||||||
discretizationStep (1, 1) double = 1;
|
discretizationStep (1, 1) double = 1;
|
||||||
|
protectedRange (1, 1) double = 1;
|
||||||
end
|
end
|
||||||
arguments (Output)
|
arguments (Output)
|
||||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||||
end
|
end
|
||||||
|
|
||||||
obj.groundAlt = domain.minCorner(3);
|
obj.groundAlt = domain.minCorner(3);
|
||||||
|
obj.protectedRange = protectedRange;
|
||||||
|
|
||||||
% Extract footprint limits
|
% Extract footprint limits
|
||||||
xMin = min(domain.footprint(:, 1));
|
xMin = min(domain.footprint(:, 1));
|
||||||
@@ -30,4 +32,6 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep)
|
|||||||
% store ground position
|
% store ground position
|
||||||
idx = obj.values == max(obj.values, [], "all");
|
idx = obj.values == max(obj.values, [], "all");
|
||||||
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
||||||
|
|
||||||
|
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")
|
||||||
end
|
end
|
||||||
@@ -1,9 +1,9 @@
|
|||||||
function obj = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep)
|
function obj = initializeRandomMvnpdf(obj, domain, discretizationStep, protectedRange)
|
||||||
arguments (Input)
|
arguments (Input)
|
||||||
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
|
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
|
||||||
domain (1, 1) {mustBeGeometry};
|
domain (1, 1) {mustBeGeometry};
|
||||||
protectedRange (1, 1) double = 1;
|
|
||||||
discretizationStep (1, 1) double = 1;
|
discretizationStep (1, 1) double = 1;
|
||||||
|
protectedRange (1, 1) double = 1;
|
||||||
end
|
end
|
||||||
arguments (Output)
|
arguments (Output)
|
||||||
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
|
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
|
||||||
@@ -23,5 +23,5 @@ function obj = initializeRandomMvnpdf(obj, domain, protectedRange, discretizatio
|
|||||||
objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu, sig);
|
objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu, sig);
|
||||||
|
|
||||||
% Regular initialization
|
% Regular initialization
|
||||||
obj = obj.initialize(objectiveFunction, domain, discretizationStep);
|
obj = obj.initialize(objectiveFunction, domain, discretizationStep, protectedRange);
|
||||||
end
|
end
|
||||||
@@ -9,11 +9,12 @@ classdef sensingObjective
|
|||||||
X = [];
|
X = [];
|
||||||
Y = [];
|
Y = [];
|
||||||
values = [];
|
values = [];
|
||||||
|
protectedRange = 1; % keep obstacles from crowding objective
|
||||||
end
|
end
|
||||||
|
|
||||||
methods (Access = public)
|
methods (Access = public)
|
||||||
[obj] = initialize(obj, objectiveFunction, domain, discretizationStep);
|
[obj] = initialize(obj, objectiveFunction, domain, discretizationStep, protectedRange);
|
||||||
[obj] = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep);
|
[obj] = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep, protectedRange);
|
||||||
[f ] = plot(obj, ind, f);
|
[f ] = plot(obj, ind, f);
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
@@ -1,17 +1,43 @@
|
|||||||
function [obj] = initializeRandom(obj, minDimension, tag, label)
|
function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain)
|
||||||
arguments (Input)
|
arguments (Input)
|
||||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||||
minDimension (1, 1) double = 10;
|
|
||||||
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
|
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
|
||||||
label (1, 1) string = "";
|
label (1, 1) string = "";
|
||||||
|
minDimension (1, 1) double = 10;
|
||||||
|
maxDimension (1, 1) double= 20;
|
||||||
|
domain (1, 1) {mustBeGeometry} = rectangularPrism;
|
||||||
end
|
end
|
||||||
arguments (Output)
|
arguments (Output)
|
||||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||||
end
|
end
|
||||||
|
|
||||||
% Produce random bounds
|
% Produce random bounds based on region type
|
||||||
L = ceil(minDimension + rand * minDimension);
|
if tag == REGION_TYPE.DOMAIN
|
||||||
bounds = [zeros(1, 3); L * ones(1, 3)];
|
% Domain
|
||||||
|
L = ceil(minDimension + rand * (maxDimension - minDimension));
|
||||||
|
bounds = [zeros(1, 3); L * ones(1, 3)];
|
||||||
|
else
|
||||||
|
% Obstacle
|
||||||
|
|
||||||
|
% Produce a corners that are contained in the domain
|
||||||
|
ii = 0;
|
||||||
|
candidateMaxCorner = domain.maxCorner + ones(1, 3);
|
||||||
|
candidateMinCorner = domain.minCorner - ones(1, 3);
|
||||||
|
% Continue until the domain contains the obstacle without crowding the objective
|
||||||
|
while ~domain.contains(candidateMaxCorner) || all(domain.objective.groundPos + domain.objective.protectedRange >= candidateMinCorner(1:2), 2) && all(domain.objective.groundPos - domain.objective.protectedRange <= candidateMaxCorner(1:2), 2)
|
||||||
|
if ii == 0 || ii > 10
|
||||||
|
candidateMinCorner = domain.random();
|
||||||
|
candidateMinCorner(3) = 0; % bind to floor
|
||||||
|
ii = 1;
|
||||||
|
end
|
||||||
|
|
||||||
|
candidateMaxCorner = candidateMinCorner + minDimension + rand(1, 3) * (maxDimension - minDimension);
|
||||||
|
|
||||||
|
ii = ii + 1;
|
||||||
|
end
|
||||||
|
|
||||||
|
bounds = [candidateMinCorner; candidateMaxCorner;];
|
||||||
|
end
|
||||||
|
|
||||||
% Regular initialization
|
% Regular initialization
|
||||||
obj = obj.initialize(bounds, tag, label);
|
obj = obj.initialize(bounds, tag, label);
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ classdef rectangularPrism
|
|||||||
|
|
||||||
methods (Access = public)
|
methods (Access = public)
|
||||||
[obj ] = initialize(obj, bounds, tag, label, objectiveFunction, discretizationStep);
|
[obj ] = initialize(obj, bounds, tag, label, objectiveFunction, discretizationStep);
|
||||||
[obj ] = initializeRandom(obj, tag, label);
|
[obj ] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain);
|
||||||
[r ] = random(obj);
|
[r ] = random(obj);
|
||||||
[c ] = contains(obj, pos);
|
[c ] = contains(obj, pos);
|
||||||
[d ] = distance(obj, pos);
|
[d ] = distance(obj, pos);
|
||||||
|
|||||||
@@ -43,15 +43,13 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
% Generate a random domain
|
% Generate a random domain
|
||||||
function tc = setDomain(tc)
|
function tc = setDomain(tc)
|
||||||
% random integer-dimensioned cubic domain
|
% random integer-dimensioned cubic domain
|
||||||
tc.domain = tc.domain.initializeRandom(tc.minDimension, REGION_TYPE.DOMAIN, "Domain");
|
tc.domain = tc.domain.initializeRandom(REGION_TYPE.DOMAIN, "Domain", tc.minDimension);
|
||||||
% Random bivariate normal PDF objective
|
% Random bivariate normal PDF objective
|
||||||
tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.protectedRange, tc.discretizationStep);
|
tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||||
end
|
end
|
||||||
% Instantiate agents
|
% Instantiate agents
|
||||||
function tc = setAgents(tc)
|
function tc = setAgents(tc)
|
||||||
% Agents will be initialized under different parameters in
|
% Agents will be initialized under different parameters in individual test cases
|
||||||
% individual test cases
|
|
||||||
|
|
||||||
% Instantiate a random number of agents according to parameters
|
% Instantiate a random number of agents according to parameters
|
||||||
for ii = 1:randi([tc.minAgents, tc.maxAgents])
|
for ii = 1:randi([tc.minAgents, tc.maxAgents])
|
||||||
tc.agents{ii, 1} = agent;
|
tc.agents{ii, 1} = agent;
|
||||||
@@ -73,20 +71,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
for ii = 1:size(tc.obstacles, 1)
|
for ii = 1:size(tc.obstacles, 1)
|
||||||
badCandidate = true;
|
badCandidate = true;
|
||||||
while badCandidate
|
while badCandidate
|
||||||
% Instantiate a rectangular prism obstacle
|
% Instantiate a rectangular prism obstacle inside the domain
|
||||||
tc.obstacles{ii} = rectangularPrism;
|
tc.obstacles{ii} = rectangularPrism;
|
||||||
|
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
|
||||||
|
|
||||||
% Randomly generate min corner for the obstacle
|
|
||||||
candidateMinCorner = tc.domain.random();
|
|
||||||
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
|
|
||||||
|
|
||||||
% Randomly select a corresponding maximum corner that
|
|
||||||
% satisfies min/max obstacle size specifications
|
|
||||||
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
|
|
||||||
|
|
||||||
% Initialize obstacle
|
|
||||||
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
|
||||||
|
|
||||||
% Check if the obstacle intersects with any existing
|
% Check if the obstacle intersects with any existing
|
||||||
% obstacles
|
% obstacles
|
||||||
violation = false;
|
violation = false;
|
||||||
@@ -99,24 +87,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
if violation
|
if violation
|
||||||
continue;
|
continue;
|
||||||
end
|
end
|
||||||
|
|
||||||
% Make sure that the obstacles are fully contained by
|
|
||||||
% the domain
|
|
||||||
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
|
|
||||||
continue;
|
|
||||||
end
|
|
||||||
|
|
||||||
% Make sure that the obstacles don't cover the sensing
|
|
||||||
% objective
|
|
||||||
if obstacleCoversObjective(tc.domain.objective, tc.obstacles{ii})
|
|
||||||
continue;
|
|
||||||
end
|
|
||||||
|
|
||||||
% Make sure that the obstacles aren't too close to the
|
|
||||||
% sensing objective
|
|
||||||
if obstacleCrowdsObjective(tc.domain.objective, tc.obstacles{ii}, tc.protectedRange)
|
|
||||||
continue;
|
|
||||||
end
|
|
||||||
|
|
||||||
badCandidate = false;
|
badCandidate = false;
|
||||||
end
|
end
|
||||||
@@ -241,20 +211,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
for ii = 1:size(tc.obstacles, 1)
|
for ii = 1:size(tc.obstacles, 1)
|
||||||
badCandidate = true;
|
badCandidate = true;
|
||||||
while badCandidate
|
while badCandidate
|
||||||
% Instantiate a rectangular prism obstacle
|
% Instantiate a rectangular prism obstacle inside the domain
|
||||||
tc.obstacles{ii} = rectangularPrism;
|
tc.obstacles{ii} = rectangularPrism;
|
||||||
|
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
|
||||||
|
|
||||||
% Randomly generate min corner for the obstacle
|
|
||||||
candidateMinCorner = tc.domain.random();
|
|
||||||
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
|
|
||||||
|
|
||||||
% Randomly select a corresponding maximum corner that
|
|
||||||
% satisfies min/max obstacle size specifications
|
|
||||||
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
|
|
||||||
|
|
||||||
% Initialize obstacle
|
|
||||||
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
|
||||||
|
|
||||||
% Check if the obstacle intersects with any existing
|
% Check if the obstacle intersects with any existing
|
||||||
% obstacles
|
% obstacles
|
||||||
violation = false;
|
violation = false;
|
||||||
@@ -267,24 +227,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
if violation
|
if violation
|
||||||
continue;
|
continue;
|
||||||
end
|
end
|
||||||
|
|
||||||
% Make sure that the obstacles are fully contained by
|
|
||||||
% the domain
|
|
||||||
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
|
|
||||||
continue;
|
|
||||||
end
|
|
||||||
|
|
||||||
% Make sure that the obstacles don't cover the sensing
|
|
||||||
% objective
|
|
||||||
if obstacleCoversObjective(tc.domain.objective, tc.obstacles{ii})
|
|
||||||
continue;
|
|
||||||
end
|
|
||||||
|
|
||||||
% Make sure that the obstacles aren't too close to the
|
|
||||||
% sensing objective
|
|
||||||
if obstacleCrowdsObjective(tc.domain.objective, tc.obstacles{ii}, tc.protectedRange)
|
|
||||||
continue;
|
|
||||||
end
|
|
||||||
|
|
||||||
badCandidate = false;
|
badCandidate = false;
|
||||||
end
|
end
|
||||||
@@ -411,7 +353,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||||
|
|
||||||
% make basic sensing objective
|
% make basic sensing objective
|
||||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep);
|
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||||
|
|
||||||
% Initialize agent collision geometry
|
% Initialize agent collision geometry
|
||||||
geometry1 = rectangularPrism;
|
geometry1 = rectangularPrism;
|
||||||
|
|||||||
Reference in New Issue
Block a user