refactored sensing objective into domain, random inits
This commit is contained in:
@@ -2,12 +2,15 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
testClass = miSim;
|
||||
|
||||
% Domain
|
||||
domain = rectangularPrism; % domain geometry
|
||||
% Sim
|
||||
maxIter = 250;
|
||||
timestep = 0.05
|
||||
partitoningFreq = 5;
|
||||
|
||||
% Domain
|
||||
domain = rectangularPrism; % domain geometry
|
||||
minDimension = 10;
|
||||
|
||||
% Obstacles
|
||||
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
|
||||
maxNumObstacles = 3; % Maximum number of obstacles to be randomly generated
|
||||
@@ -16,7 +19,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
obstacles = cell(1, 0);
|
||||
|
||||
% Objective
|
||||
objectiveDiscretizationStep = 0.01; % Step at which the objective function is solved in X and Y space
|
||||
discretizationStep = 0.01; % Step at which the objective function is solved in X and Y space
|
||||
protectedRange = 1; % Minimum distance between the sensing objective and the edge of the domain
|
||||
objective = sensingObjective;
|
||||
|
||||
@@ -39,26 +42,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
methods (TestMethodSetup)
|
||||
% Generate a random domain
|
||||
function tc = setDomain(tc)
|
||||
% random integer-sized cube domain ranging from [0, 5 -> 25]
|
||||
% in all dimensions
|
||||
L = ceil(5 + rand * 10 + rand * 10);
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); L * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
end
|
||||
% Generate a random sensing objective within that domain
|
||||
function tc = setSensingObjective(tc)
|
||||
% Using a bivariate normal distribution
|
||||
% Set peak position (mean)
|
||||
mu = tc.domain.minCorner;
|
||||
while tc.domain.distance(mu) < tc.protectedRange
|
||||
mu = tc.domain.random();
|
||||
end
|
||||
mu(3) = 0;
|
||||
|
||||
% Set standard deviations of bivariate distribution
|
||||
sig = [2 + rand * 2, 1; 1, 2 + rand * 2];
|
||||
|
||||
% Define objective
|
||||
tc.objective = tc.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], mu(1:2), sig), tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
|
||||
% random integer-dimensioned cubic domain
|
||||
tc.domain = tc.domain.initializeRandom(tc.minDimension, REGION_TYPE.DOMAIN, "Domain");
|
||||
% Random bivariate normal PDF objective
|
||||
tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.protectedRange, tc.discretizationStep);
|
||||
end
|
||||
% Instantiate agents
|
||||
function tc = setAgents(tc)
|
||||
@@ -121,13 +108,13 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Make sure that the obstacles don't cover the sensing
|
||||
% objective
|
||||
if obstacleCoversObjective(tc.objective, tc.obstacles{ii})
|
||||
if obstacleCoversObjective(tc.domain.objective, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles aren't too close to the
|
||||
% sensing objective
|
||||
if obstacleCrowdsObjective(tc.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
if obstacleCrowdsObjective(tc.domain.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
continue;
|
||||
end
|
||||
|
||||
@@ -140,11 +127,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
initInvalid = true;
|
||||
while initInvalid
|
||||
candidatePos = [tc.objective.groundPos, 0];
|
||||
candidatePos = [tc.domain.objective.groundPos, 0];
|
||||
% Generate a random position for the agent based on
|
||||
% existing agent positions
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
end
|
||||
else
|
||||
@@ -159,7 +146,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Make sure that the candidate position does not crowd
|
||||
% the sensing objective and create boring scenarios
|
||||
if agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
if agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
continue;
|
||||
end
|
||||
|
||||
@@ -243,7 +230,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
end
|
||||
function misim_run(tc)
|
||||
% randomly create obstacles
|
||||
@@ -289,13 +276,13 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Make sure that the obstacles don't cover the sensing
|
||||
% objective
|
||||
if obstacleCoversObjective(tc.objective, tc.obstacles{ii})
|
||||
if obstacleCoversObjective(tc.domain.objective, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles aren't too close to the
|
||||
% sensing objective
|
||||
if obstacleCrowdsObjective(tc.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
if obstacleCrowdsObjective(tc.domain.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
continue;
|
||||
end
|
||||
|
||||
@@ -308,11 +295,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
initInvalid = true;
|
||||
while initInvalid
|
||||
candidatePos = [tc.objective.groundPos, 0];
|
||||
candidatePos = [tc.domain.objective.groundPos, 0];
|
||||
% Generate a random position for the agent based on
|
||||
% existing agent positions
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
end
|
||||
else
|
||||
@@ -327,7 +314,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Make sure that the candidate position does not crowd
|
||||
% the sensing objective and create boring scenarios
|
||||
if agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
if agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
continue;
|
||||
end
|
||||
|
||||
@@ -411,7 +398,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
|
||||
% Run simulation loop
|
||||
[tc.testClass, f] = tc.testClass.run(f);
|
||||
@@ -424,7 +411,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.objective = tc.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2), eye(2)), tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2), eye(2)), tc.domain.footprint, tc.domain.minCorner(3), tc.discretizationStep);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
geometry1 = rectangularPrism;
|
||||
@@ -442,7 +429,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
end
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user