Initializing domain, obstacles, objective, and agents
This commit is contained in:
18
REGION_TYPE.m
Normal file
18
REGION_TYPE.m
Normal file
@@ -0,0 +1,18 @@
|
||||
classdef REGION_TYPE
|
||||
properties
|
||||
id
|
||||
color
|
||||
end
|
||||
enumeration
|
||||
INVALID (0, [255, 127, 255]); % default value
|
||||
DOMAIN (1, [0, 0, 0]); % domain region
|
||||
OBSTACLE (2, [255, 127, 127]); % obstacle region
|
||||
COLLISION (3, [255, 255, 128]); % collision avoidance region
|
||||
end
|
||||
methods
|
||||
function obj = REGION_TYPE(id, color)
|
||||
obj.id = id;
|
||||
obj.color = color./ 255;
|
||||
end
|
||||
end
|
||||
end
|
||||
59
agent.m
Normal file
59
agent.m
Normal file
@@ -0,0 +1,59 @@
|
||||
classdef agent
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
% Identifiers
|
||||
index = NaN;
|
||||
label = "";
|
||||
|
||||
% Sensor
|
||||
sensingFunction = @(r) 0.5; % probability of detection as a function of range
|
||||
|
||||
% State
|
||||
pos = NaN(1, 3);
|
||||
vel = NaN(1, 3);
|
||||
cBfromC = NaN(3); % DCM body from sim cartesian (assume fixed for now)
|
||||
|
||||
% Collision
|
||||
collisionGeometry;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, pos, vel, cBfromC, collisionGeometry, index, label)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
pos (1, 3) double;
|
||||
vel (1, 3) double;
|
||||
cBfromC (3, 3) double {mustBeDcm};
|
||||
collisionGeometry (1, 1) {mustBeConstraintGeometries};
|
||||
index (1, 1) double = NaN;
|
||||
label (1, 1) string = "";
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
end
|
||||
|
||||
obj.pos = pos;
|
||||
obj.vel = vel;
|
||||
obj.cBfromC = cBfromC;
|
||||
obj.collisionGeometry = collisionGeometry;
|
||||
obj.index = index;
|
||||
obj.label = label;
|
||||
end
|
||||
function f = plot(obj, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Plot points representing the agent position
|
||||
hold(f.CurrentAxes, "on");
|
||||
scatter3(obj.pos(1), obj.pos(2), obj.pos(3), 'filled', 'ko', 'SizeData', 50);
|
||||
hold(f.CurrentAxes, "off");
|
||||
end
|
||||
end
|
||||
end
|
||||
8
firstPlotSetup.m
Normal file
8
firstPlotSetup.m
Normal file
@@ -0,0 +1,8 @@
|
||||
function f = firstPlotSetup(f)
|
||||
if isempty(f.CurrentAxes)
|
||||
axes(f);
|
||||
axis(f.CurrentAxes, "equal");
|
||||
grid(f.CurrentAxes, "on");
|
||||
view(f.CurrentAxes, 3);
|
||||
end
|
||||
end
|
||||
64
miSim.m
Normal file
64
miSim.m
Normal file
@@ -0,0 +1,64 @@
|
||||
classdef miSim
|
||||
% multiagent interconnection simulation
|
||||
|
||||
% Simulation parameters
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
domain = rectangularPrismConstraint;
|
||||
objective = sensingObjective;
|
||||
constraintGeometries = cell(0, 1); % geometries that define constraints within the domain
|
||||
agents = cell(0, 1); % agents that move within the domain
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, domain, objective, agents, constraintGeometries)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
domain (1, 1) {mustBeConstraintGeometries};
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
agents (:, 1) cell {mustBeAgents};
|
||||
constraintGeometries (:, 1) cell {mustBeConstraintGeometries} = cell(0, 1);
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
%% Define domain
|
||||
obj.domain = domain;
|
||||
|
||||
%% Add constraint geometries against the domain
|
||||
obj.constraintGeometries = constraintGeometries;
|
||||
|
||||
%% Define objective
|
||||
obj.objective = objective;
|
||||
|
||||
%% Define agents
|
||||
obj.agents = agents;
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
methods (Access = private)
|
||||
function validateInitialization(obj)
|
||||
% Assert obstacles do not intersect with the domain
|
||||
|
||||
% Assert obstacles do not intersect with each other
|
||||
|
||||
% Assert the objective has only one maxima within the domain
|
||||
|
||||
% Assert the objective's sole maximum is not inaccessible due
|
||||
% to the placement of an obstacle
|
||||
|
||||
end
|
||||
function validateLoop(obj)
|
||||
% Assert that agents are safely inside the domain
|
||||
|
||||
% Assert that agents are not in proximity to obstacles
|
||||
|
||||
% Assert that agents are not in proximity to each other
|
||||
|
||||
% Assert that agents form a connected graph
|
||||
|
||||
|
||||
end
|
||||
end
|
||||
end
|
||||
106
rectangularPrismConstraint.m
Normal file
106
rectangularPrismConstraint.m
Normal file
@@ -0,0 +1,106 @@
|
||||
classdef rectangularPrismConstraint
|
||||
% Rectangular prism constraint geometry
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
tag = REGION_TYPE.INVALID;
|
||||
label = "";
|
||||
|
||||
minCorner = NaN(3, 1);
|
||||
maxCorner = NaN(3, 1);
|
||||
|
||||
dimensions = NaN(3, 1);
|
||||
|
||||
center = NaN;
|
||||
|
||||
vertices = NaN(8, 3);
|
||||
|
||||
footprint = NaN(2, 4);
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, bounds, tag, label)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')};
|
||||
bounds (3, 2) double;
|
||||
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
|
||||
label (1, 1) string = "";
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')};
|
||||
end
|
||||
|
||||
obj.tag = tag;
|
||||
obj.label = label;
|
||||
|
||||
%% Define geometry bounds by LL corner and UR corner
|
||||
obj.minCorner = bounds(:, 1);
|
||||
obj.maxCorner = bounds(:, 2);
|
||||
|
||||
% Compute L, W, H
|
||||
obj.dimensions = [obj.maxCorner(1) - obj.minCorner(1), obj.maxCorner(2) - obj.minCorner(2), obj.maxCorner(3) - obj.minCorner(3)];
|
||||
|
||||
% Compute center
|
||||
obj.center = obj.minCorner + obj.dimensions ./ 2;
|
||||
|
||||
% Compute vertices
|
||||
obj.vertices = [obj.minCorner';
|
||||
obj.maxCorner(1), obj.minCorner(2:3)';
|
||||
obj.maxCorner(1:2)', obj.minCorner(3);
|
||||
obj.minCorner(1), obj.maxCorner(2), obj.minCorner(3);
|
||||
obj.minCorner(1:2)', obj.maxCorner(3);
|
||||
obj.maxCorner(1), obj.minCorner(2), obj.maxCorner(3);
|
||||
obj.minCorner(1), obj.maxCorner(2:3)'
|
||||
obj.maxCorner';];
|
||||
|
||||
% Compute footprint
|
||||
obj.footprint = [obj.minCorner(1:2, 1), ...
|
||||
[obj.minCorner(1, 1); obj.maxCorner(2, 1)], ...
|
||||
[obj.maxCorner(1, 1); obj.minCorner(2, 1)], ...
|
||||
obj.maxCorner(1:2, 1)];
|
||||
end
|
||||
function r = random(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')};
|
||||
end
|
||||
arguments (Output)
|
||||
r (1, 3) double
|
||||
end
|
||||
r = (obj.vertices(1, 1:3) + rand(1, 3) .* obj.vertices(8, 1:3) - obj.vertices(1, 1:3))';
|
||||
end
|
||||
function c = contains(obj, pos)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')};
|
||||
pos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
c (1, 1) logical
|
||||
end
|
||||
c = all(pos >= repmat(obj.minCorner', size(pos, 1), 1), 2) & all(pos <= repmat(obj.maxCorner', size(pos, 1), 1), 2);
|
||||
end
|
||||
function f = plotWireframe(obj, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
edges = [1 2; 2 3; 3 4; 4 1; % bottom square
|
||||
5 6; 6 8; 8 7; 7 5; % top square
|
||||
1 5; 2 6; 3 8; 4 7]; % vertical edges
|
||||
|
||||
% Create plotting inputs from vertices and edges
|
||||
X = [obj.vertices(edges(:,1),1), obj.vertices(edges(:,2),1)]';
|
||||
Y = [obj.vertices(edges(:,1),2), obj.vertices(edges(:,2),2)]';
|
||||
Z = [obj.vertices(edges(:,1),3), obj.vertices(edges(:,2),3)]';
|
||||
|
||||
% Plot the boundaries of the constraint geometry
|
||||
hold(f.CurrentAxes, "on");
|
||||
plot3(X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
|
||||
hold(f.CurrentAxes, "off");
|
||||
end
|
||||
end
|
||||
end
|
||||
69
sensingObjective.m
Normal file
69
sensingObjective.m
Normal file
@@ -0,0 +1,69 @@
|
||||
classdef sensingObjective
|
||||
% Sensing objective definition parent class
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
label = "";
|
||||
groundAlt = 0;
|
||||
groundPos = [0, 0];
|
||||
discretizationStep = 1;
|
||||
objectiveFunction = @(x, y) 0; % define objective functions over a grid in this manner
|
||||
X = [];
|
||||
Y = [];
|
||||
values = [];
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, objectiveFunction, footprint, groundAlt, discretizationStep)
|
||||
arguments (Input)
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
|
||||
footprint (2, :) double;
|
||||
groundAlt (1, 1) double = 0;
|
||||
discretizationStep (1, 1) double = 1;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
end
|
||||
|
||||
obj.groundAlt = groundAlt;
|
||||
|
||||
% Extract footprint limits
|
||||
xMin = min(footprint(1, :));
|
||||
xMax = max(footprint(1, :));
|
||||
yMin = min(footprint(2, :));
|
||||
yMax = max(footprint(2, :));
|
||||
|
||||
xGrid = unique([xMin:discretizationStep:xMax, xMax]);
|
||||
yGrid = unique([yMin:discretizationStep:yMax, yMax]);
|
||||
|
||||
% Store grid points for plotting later
|
||||
[obj.X, obj.Y] = meshgrid(xGrid, yGrid);
|
||||
|
||||
% Evaluate function over grid points
|
||||
obj.objectiveFunction = objectiveFunction;
|
||||
obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X));
|
||||
|
||||
% store ground position
|
||||
idx = obj.values == max(obj.values, [], "all");
|
||||
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
||||
end
|
||||
function f = plot(obj, f)
|
||||
arguments (Input)
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
f (1,1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
f (1,1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Plot gradient on the "floor" of the domain
|
||||
hold(f.CurrentAxes, "on");
|
||||
s = surf(obj.X, obj.Y, repmat(obj.groundAlt, size(obj.X)), obj.values ./ max(obj.values, [], "all"), 'EdgeColor', 'none');
|
||||
s.HitTest = 'off';
|
||||
s.PickableParts = 'none';
|
||||
hold(f.CurrentAxes, "off");
|
||||
end
|
||||
end
|
||||
end
|
||||
201
test_miSim.m
Normal file
201
test_miSim.m
Normal file
@@ -0,0 +1,201 @@
|
||||
classdef test_miSim < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
testClass = miSim;
|
||||
% Domain
|
||||
domain = rectangularPrismConstraint;
|
||||
|
||||
% Obstacles
|
||||
constraintGeometries = cell(1, 0);
|
||||
|
||||
% Objective
|
||||
objective = sensingObjective;
|
||||
objectiveFunction = @(x, y) 0;
|
||||
objectiveDiscretizationStep = 0.01;
|
||||
|
||||
% Agents
|
||||
minAgents = 3;
|
||||
maxAgents = 9;
|
||||
agents = cell(1, 0);
|
||||
|
||||
% Collision
|
||||
minCollisionRange = 0.1;
|
||||
maxCollisionRange = 0.5;
|
||||
collisionRanges = NaN;
|
||||
|
||||
% Communications
|
||||
comRange = 5;
|
||||
end
|
||||
|
||||
% Setup for each test
|
||||
methods (TestMethodSetup)
|
||||
% Generate a random domain
|
||||
function tc = setDomain(tc)
|
||||
% random integer-sized domain within [-10, 10] in all dimensions
|
||||
tc.domain = tc.domain.initialize(ceil([rand * -10, rand * 10; rand * -10, rand * 10; rand * -10, rand * 10]), REGION_TYPE.DOMAIN, "Domain");
|
||||
end
|
||||
% Generate a random sensing objective within that domain
|
||||
function tc = setSensingObjective(tc)
|
||||
mu = tc.domain.random();
|
||||
sig = [3, 1; 1, 4];
|
||||
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1, 1:2), sig);
|
||||
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3, 1), tc.objectiveDiscretizationStep);
|
||||
end
|
||||
% Instantiate agents, they will be initialized under different
|
||||
% parameters in individual test cases
|
||||
function tc = setAgents(tc)
|
||||
for ii = 1:randi([tc.minAgents, tc.maxAgents])
|
||||
tc.agents{ii, 1} = agent;
|
||||
end
|
||||
tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange);
|
||||
end
|
||||
end
|
||||
|
||||
methods (Test)
|
||||
% Test methods
|
||||
function misim_initialization(tc)
|
||||
% randomly create 2-3 constraint geometries
|
||||
nGeom = 1 + randi(2);
|
||||
tc.constraintGeometries = cell(nGeom, 1);
|
||||
for ii = 1:size(tc.constraintGeometries, 1)
|
||||
% Instantiate a rectangular prism constraint that spans the
|
||||
% domain's height
|
||||
tc.constraintGeometries{ii, 1} = rectangularPrismConstraint;
|
||||
|
||||
% Randomly come up with constraint geometries until they
|
||||
% fit within the domain
|
||||
candidateMinCorner = -Inf(3, 1);
|
||||
candidateMaxCorner = Inf(3, 1);
|
||||
|
||||
% make sure the obstacles don't contain the sensing objective
|
||||
obstructs = true;
|
||||
while obstructs
|
||||
|
||||
% Make sure the obstacle is in the domain
|
||||
while any(candidateMinCorner(1:2, 1) < tc.domain.minCorner(1:2, 1))
|
||||
candidateMinCorner = tc.domain.minCorner(1:3, 1) + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1); -Inf]; % random spots on the ground
|
||||
end
|
||||
while any(candidateMaxCorner(1:2, 1) > tc.domain.maxCorner(1:2, 1))
|
||||
candidateMaxCorner = [candidateMinCorner(1:2, 1); 0] + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1) ./ 2; Inf]; % halved to keep from being excessively large
|
||||
end
|
||||
|
||||
% once a domain-valid obstacle has been found, make
|
||||
% sure it doesn't obstruct the sensing target
|
||||
if all(candidateMinCorner(1:2, 1)' <= tc.objective.groundPos) && all(candidateMaxCorner(1:2, 1)' >= tc.objective.groundPos)
|
||||
% reset to try again
|
||||
candidateMinCorner = -Inf(3, 1);
|
||||
candidateMaxCorner = Inf(3, 1);
|
||||
else
|
||||
obstructs = false;
|
||||
end
|
||||
end
|
||||
|
||||
% Reduce infinite dimensions to the domain
|
||||
candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner));
|
||||
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
|
||||
|
||||
% Initialize constraint geometry
|
||||
tc.constraintGeometries{ii, 1} = tc.constraintGeometries{ii, 1}.initialize([candidateMinCorner, candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
||||
end
|
||||
|
||||
% Repeat this until a connected set of agent initial conditions
|
||||
% is found by random chance
|
||||
connected = false;
|
||||
while ~connected
|
||||
% Randomly place agents in the domain
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
posInvalid = true;
|
||||
while posInvalid
|
||||
% Initialize the agent into a random spot in the domain
|
||||
candidatePos = tc.domain.random();
|
||||
candidateGeometry = rectangularPrismConstraint;
|
||||
tc.agents{ii, 1} = tc.agents{ii, 1}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii, 1) * ones(1, 3); candidatePos + tc.collisionRanges(ii, 1) * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Check obstacles to confirm that none are violated
|
||||
for jj = 1:size(tc.constraintGeometries, 1)
|
||||
inside = false;
|
||||
if tc.constraintGeometries{jj, 1}.contains(tc.agents{ii, 1}.pos)
|
||||
% Found a violation, stop checking
|
||||
inside = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Agent is inside obstacle, try again
|
||||
if inside
|
||||
continue;
|
||||
end
|
||||
|
||||
% Create a collision geometry for this agent
|
||||
candidateGeometry = rectangularPrismConstraint;
|
||||
candidateGeometry = candidateGeometry.initialize([tc.agents{ii, 1}.pos - 0.1 * ones(1, 3); tc.agents{ii, 1}.pos + 0.1 * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
|
||||
% Check previously placed agents for collisions
|
||||
for jj = 1:(ii - 1)
|
||||
% Check if previously defined agents collide with
|
||||
% this one
|
||||
colliding = false;
|
||||
if candidateGeometry.contains(tc.agents{jj, 1}.pos)
|
||||
% Found a violation, stop checking
|
||||
colliding = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
|
||||
% Agent is colliding with another, try again
|
||||
if ii ~= 1 && colliding
|
||||
continue;
|
||||
end
|
||||
|
||||
% Allow to proceed since no obstacle/collision
|
||||
% violations were found
|
||||
posInvalid = false;
|
||||
end
|
||||
end
|
||||
|
||||
% Collect all agent positions
|
||||
posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false);
|
||||
posArray = reshape([posArray{:}], size(tc.agents, 1), 3);
|
||||
|
||||
% Communications checks
|
||||
adjacency = false(size(tc.agents, 1), size(tc.agents, 1));
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
% Compute distance from each to all agents
|
||||
for jj = 1:(size(tc.agents, 1))
|
||||
if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange
|
||||
adjacency(ii, jj) = true;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% Check connectivity
|
||||
G = graph(adjacency);
|
||||
connected = all(conncomp(G) == 1);
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.constraintGeometries);
|
||||
|
||||
% Plot domain
|
||||
f = tc.testClass.domain.plotWireframe;
|
||||
|
||||
% Set plotting limits to focus on the domain
|
||||
xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]);
|
||||
ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]);
|
||||
zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]);
|
||||
|
||||
% Plot constraint geometries
|
||||
for ii = 1:size(tc.testClass.constraintGeometries, 1)
|
||||
tc.testClass.constraintGeometries{ii, 1}.plotWireframe(f);
|
||||
end
|
||||
|
||||
% Plot objective gradient
|
||||
f = tc.testClass.objective.plot(f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
for ii = 1:size(tc.testClass.agents, 1)
|
||||
f = tc.testClass.agents{ii, 1}.plot(f);
|
||||
f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f);
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
10
validators/mustBeAgents.m
Normal file
10
validators/mustBeAgents.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function mustBeAgents(agents)
|
||||
validGeometries = ["rectangularPrismConstraint";];
|
||||
if isa(agents, 'cell')
|
||||
for ii = 1:size(agents, 1)
|
||||
assert(isa(agents{ii}, "agent"), "Agent in index %d is not a valid agent class", ii);
|
||||
end
|
||||
else
|
||||
assert(isa(agents, validGeometries), "Agent is not a valid agent class");
|
||||
end
|
||||
end
|
||||
10
validators/mustBeConstraintGeometries.m
Normal file
10
validators/mustBeConstraintGeometries.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function mustBeConstraintGeometries(constraintGeometry)
|
||||
validGeometries = ["rectangularPrismConstraint";];
|
||||
if isa(constraintGeometry, 'cell')
|
||||
for ii = 1:size(constraintGeometry, 1)
|
||||
assert(isa(constraintGeometry{ii}, validGeometries), "Constraint geometry in index %d is not a valid constraint geometry class", ii);
|
||||
end
|
||||
else
|
||||
assert(isa(constraintGeometry, validGeometries), "Constraint geometry is not a valid constraint geometry class");
|
||||
end
|
||||
end
|
||||
12
validators/mustBeDcm.m
Normal file
12
validators/mustBeDcm.m
Normal file
@@ -0,0 +1,12 @@
|
||||
function mustBeDcm(dcm)
|
||||
% Assert 2D
|
||||
assert(numel(size(dcm)) == 2, "DCM is not 2D");
|
||||
% Assert square
|
||||
assert(size(unique(size(dcm)), 1) == 1, "DCM is not a square matrix");
|
||||
|
||||
epsilon = 1e-9;
|
||||
% Assert inverse equivalent to transpose
|
||||
assert(all(abs(inv(dcm) - dcm') < epsilon, "all"), "DCM inverse is not equivalent to transpose");
|
||||
% Assert determinant is 1
|
||||
assert(det(dcm) > 1 - epsilon && det(dcm) < 1 + epsilon, "DCM has determinant not equal to 1");
|
||||
end
|
||||
Reference in New Issue
Block a user