stopped randomly placing agents too close to objective, fixed row/col preference
This commit is contained in:
73
test_miSim.m
73
test_miSim.m
@@ -6,6 +6,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Obstacles
|
||||
constraintGeometries = cell(1, 0);
|
||||
minObstacleDimension = 1;
|
||||
|
||||
% Objective
|
||||
objective = sensingObjective;
|
||||
@@ -32,14 +33,14 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
function tc = setDomain(tc)
|
||||
% random integer-sized domain within [-10, 10] in all dimensions
|
||||
L = ceil(5 + rand * 10 + rand * 10);
|
||||
tc.domain = tc.domain.initialize(([0, L; 0, L; 0, L]), REGION_TYPE.DOMAIN, "Domain");
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); L * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
end
|
||||
% Generate a random sensing objective within that domain
|
||||
function tc = setSensingObjective(tc)
|
||||
mu = tc.domain.random();
|
||||
sig = [3, 1; 1, 4];
|
||||
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1, 1:2), sig);
|
||||
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3, 1), tc.objectiveDiscretizationStep);
|
||||
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
|
||||
end
|
||||
% Instantiate agents, they will be initialized under different
|
||||
% parameters in individual test cases
|
||||
@@ -64,29 +65,39 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Randomly come up with constraint geometries until they
|
||||
% fit within the domain
|
||||
candidateMinCorner = -Inf(3, 1);
|
||||
candidateMaxCorner = Inf(3, 1);
|
||||
candidateMinCorner = [-Inf(1, 2), 0];
|
||||
candidateMaxCorner = Inf(1, 3);
|
||||
|
||||
% make sure the obstacles don't contain the sensing objective
|
||||
obstructs = true;
|
||||
while obstructs
|
||||
|
||||
% Make sure the obstacle is in the domain
|
||||
while any(candidateMinCorner(1:2, 1) < tc.domain.minCorner(1:2, 1))
|
||||
candidateMinCorner = tc.domain.minCorner(1:3, 1) + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1); -Inf]; % random spots on the ground
|
||||
% make sure obstacles are not too small in any dimension
|
||||
tooSmall = true;
|
||||
while tooSmall
|
||||
% make sure the obstacles don't contain the sensing objective
|
||||
obstructs = true;
|
||||
while obstructs
|
||||
|
||||
% Make sure the obstacle is in the domain
|
||||
while any(candidateMinCorner < tc.domain.minCorner)
|
||||
candidateMinCorner = tc.domain.minCorner(1:3) + [(tc.domain.maxCorner(1:2) - tc.domain.minCorner(1:2)) .* rand(1, 2), 0]; % random spots on the ground
|
||||
end
|
||||
while any(candidateMaxCorner > tc.domain.maxCorner)
|
||||
candidateMaxCorner = [candidateMinCorner(1:2), 0] + ((tc.domain.maxCorner(1:3) - tc.domain.minCorner(1:3)) .* rand(1, 3) ./ 2); % halved to keep from being excessively large
|
||||
end
|
||||
|
||||
% once a domain-valid obstacle has been found, make
|
||||
% sure it doesn't obstruct the sensing target
|
||||
if all(candidateMinCorner(1:2) <= tc.objective.groundPos) && all(candidateMaxCorner(1:2) >= tc.objective.groundPos)
|
||||
% reset to try again
|
||||
candidateMinCorner = [-Inf(1, 2), 0];
|
||||
candidateMaxCorner = Inf(1, 3);
|
||||
else
|
||||
obstructs = false;
|
||||
end
|
||||
end
|
||||
while any(candidateMaxCorner(1:3, 1) > tc.domain.maxCorner(1:3, 1))
|
||||
candidateMaxCorner = [candidateMinCorner(1:2, 1); 0] + ((tc.domain.maxCorner(1:3, 1) - tc.domain.minCorner(1:3, 1)) .* rand(3, 1) ./ 2); % halved to keep from being excessively large
|
||||
end
|
||||
|
||||
% once a domain-valid obstacle has been found, make
|
||||
% sure it doesn't obstruct the sensing target
|
||||
if all(candidateMinCorner(1:2, 1)' <= tc.objective.groundPos) && all(candidateMaxCorner(1:2, 1)' >= tc.objective.groundPos)
|
||||
% reset to try again
|
||||
candidateMinCorner = -Inf(3, 1);
|
||||
candidateMaxCorner = Inf(3, 1);
|
||||
if min(candidateMaxCorner - candidateMinCorner) >= tc.minObstacleDimension
|
||||
tooSmall = false;
|
||||
else
|
||||
obstructs = false;
|
||||
candidateMinCorner = [-Inf(1, 2), 0];
|
||||
candidateMaxCorner = Inf(1, 3);
|
||||
end
|
||||
end
|
||||
|
||||
@@ -95,7 +106,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
|
||||
|
||||
% Initialize constraint geometry
|
||||
tc.constraintGeometries{ii, 1} = tc.constraintGeometries{ii, 1}.initialize([candidateMinCorner, candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
||||
tc.constraintGeometries{ii} = tc.constraintGeometries{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
||||
end
|
||||
|
||||
% Repeat this until a connected set of agent initial conditions
|
||||
@@ -106,10 +117,18 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
posInvalid = true;
|
||||
while posInvalid
|
||||
% Initialize the agent into a random spot in the domain
|
||||
candidatePos = tc.domain.random();
|
||||
% Initialize the agent into a random spot in the
|
||||
% domain (that is not too close to the sensing
|
||||
% objective)
|
||||
boringInit = true;
|
||||
while boringInit
|
||||
candidatePos = tc.domain.random();
|
||||
if norm(candidatePos(1:2) - tc.objective.groundPos) >= norm(tc.domain.footprint(4, :) - tc.domain.footprint(1, :))/2
|
||||
boringInit = false;
|
||||
end
|
||||
end
|
||||
candidateGeometry = rectangularPrismConstraint;
|
||||
tc.agents{ii, 1} = tc.agents{ii, 1}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii, 1) * ones(1, 3); candidatePos + tc.collisionRanges(ii, 1) * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
|
||||
tc.agents{ii} = tc.agents{ii}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Check obstacles to confirm that none are violated
|
||||
for jj = 1:size(tc.constraintGeometries, 1)
|
||||
@@ -128,7 +147,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Create a collision geometry for this agent
|
||||
candidateGeometry = rectangularPrismConstraint;
|
||||
candidateGeometry = candidateGeometry.initialize([tc.agents{ii, 1}.pos - 0.1 * ones(1, 3); tc.agents{ii, 1}.pos + 0.1 * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
candidateGeometry = candidateGeometry.initialize([tc.agents{ii}.pos - 0.1 * ones(1, 3); tc.agents{ii}.pos + 0.1 * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
|
||||
% Check previously placed agents for collisions
|
||||
for jj = 1:(ii - 1)
|
||||
|
||||
Reference in New Issue
Block a user