fixed bug allowing obstructed coms connections
This commit is contained in:
3
agent.m
3
agent.m
@@ -20,13 +20,14 @@ classdef agent
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, pos, vel, cBfromC, collisionGeometry, comRange, index, label)
|
||||
function obj = initialize(obj, pos, vel, cBfromC, collisionGeometry, sensingFunction, comRange, index, label)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
pos (1, 3) double;
|
||||
vel (1, 3) double;
|
||||
cBfromC (3, 3) double {mustBeDcm};
|
||||
collisionGeometry (1, 1) {mustBeGeometry};
|
||||
sensingFunction (1, 1) {mustBeA(sensingFunction, 'function_handle')}
|
||||
comRange (1, 1) double = NaN;
|
||||
index (1, 1) double = NaN;
|
||||
label (1, 1) string = "";
|
||||
|
||||
54
miSim.m
54
miSim.m
@@ -3,6 +3,8 @@ classdef miSim
|
||||
|
||||
% Simulation parameters
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
timestep = NaN; % delta time interval for simulation iterations
|
||||
maxIter = NaN; % maximum number of simulation iterations
|
||||
domain = rectangularPrism;
|
||||
objective = sensingObjective;
|
||||
obstacles = cell(0, 1); % geometries that define obstacles within the domain
|
||||
@@ -11,33 +13,58 @@ classdef miSim
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, domain, objective, agents, obstacles)
|
||||
function obj = initialize(obj, domain, objective, agents, timestep, maxIter, obstacles)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
agents (:, 1) cell {mustBeAgents};
|
||||
timestep (:, 1) double = 0.05;
|
||||
maxIter (:, 1) double = 1000;
|
||||
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
%% Define domain
|
||||
% Define simulation time parameters
|
||||
obj.timestep = timestep;
|
||||
obj.maxIter = maxIter;
|
||||
|
||||
% Define domain
|
||||
obj.domain = domain;
|
||||
|
||||
%% Add geometries representing obstacles within the domain
|
||||
% Add geometries representing obstacles within the domain
|
||||
obj.obstacles = obstacles;
|
||||
|
||||
%% Define objective
|
||||
% Define objective
|
||||
obj.objective = objective;
|
||||
|
||||
%% Define agents
|
||||
% Define agents
|
||||
obj.agents = agents;
|
||||
|
||||
%% Compute adjacency matrix
|
||||
% Compute adjacency matrix
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
end
|
||||
function obj = run(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
keyboard
|
||||
% Iterate over agents to simulate their motion
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
obj.agents{ii}
|
||||
end
|
||||
|
||||
% Update adjacency matrix
|
||||
obj = obj.updateAdjacency;
|
||||
|
||||
% Update plots
|
||||
|
||||
end
|
||||
function obj = updateAdjacency(obj)
|
||||
arguments (Input)
|
||||
@@ -54,7 +81,13 @@ classdef miSim
|
||||
for ii = 2:size(A, 1)
|
||||
for jj = 1:(ii - 1)
|
||||
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
|
||||
A(ii, jj) = true;
|
||||
% Make sure that obstacles don't obstruct the line
|
||||
% of sight, breaking the connection
|
||||
for kk = 1:size(obj.obstacles, 1)
|
||||
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
|
||||
A(ii, jj) = true;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -86,7 +119,7 @@ classdef miSim
|
||||
|
||||
% Plot the connections
|
||||
hold(f.CurrentAxes, "on");
|
||||
o = plot3(X, Y, Z, 'Color', 'g', 'LineWidth', 1, 'LineStyle', '--');
|
||||
o = plot3(X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.CurrentAxes, "off");
|
||||
|
||||
% Check if this is a tiled layout figure
|
||||
@@ -111,11 +144,10 @@ classdef miSim
|
||||
|
||||
% Check if this is a tiled layout figure
|
||||
if strcmp(f.Children(1).Type, 'tiledlayout')
|
||||
o = plot(f.Children(1).Children(4), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k');
|
||||
o = plot(f.Children(1).Children(4), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
else
|
||||
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k');
|
||||
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
end
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
201
test_miSim.m
201
test_miSim.m
@@ -4,6 +4,8 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Domain
|
||||
domain = rectangularPrism; % domain geometry
|
||||
maxIter = 1000;
|
||||
timestep = 0.05
|
||||
|
||||
% Obstacles
|
||||
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
|
||||
@@ -74,7 +76,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
methods (Test)
|
||||
% Test methods
|
||||
function misim_initialization(tc)
|
||||
% randomly create 2-3 obstacles
|
||||
% randomly create obstacles
|
||||
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
|
||||
tc.obstacles = cell(nGeom, 1);
|
||||
|
||||
@@ -184,7 +186,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize candidate agent
|
||||
candidateGeometry = rectangularPrism;
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), eye(3),candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), eye(3),candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), @(r) 0.5, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Make sure candidate agent doesn't collide with
|
||||
% domain
|
||||
@@ -232,7 +234,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.maxIter, tc.obstacles);
|
||||
|
||||
% Plot domain
|
||||
f = tc.testClass.domain.plotWireframe;
|
||||
@@ -262,5 +264,198 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
% Plot abstract network graph
|
||||
f = tc.testClass.plotGraph(f);
|
||||
end
|
||||
function misim_run(tc)
|
||||
% randomly create obstacles
|
||||
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
|
||||
tc.obstacles = cell(nGeom, 1);
|
||||
|
||||
% Iterate over obstacles to initialize
|
||||
for ii = 1:size(tc.obstacles, 1)
|
||||
badCandidate = true;
|
||||
while badCandidate
|
||||
% Instantiate a rectangular prism obstacle
|
||||
tc.obstacles{ii} = rectangularPrism;
|
||||
|
||||
% Randomly generate min corner for the obstacle
|
||||
candidateMinCorner = tc.domain.random();
|
||||
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
|
||||
|
||||
% Randomly select a corresponding maximum corner that
|
||||
% satisfies min/max obstacle size specifications
|
||||
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
|
||||
|
||||
% Initialize obstacle
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
||||
|
||||
% Check if the obstacle intersects with any existing
|
||||
% obstacles
|
||||
violation = false;
|
||||
for kk = 1:(ii - 1)
|
||||
if geometryIntersects(tc.obstacles{kk}, tc.obstacles{ii})
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles are fully contained by
|
||||
% the domain
|
||||
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles don't cover the sensing
|
||||
% objective
|
||||
if obstacleCoversObjective(tc.objective, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles aren't too close to the
|
||||
% sensing objective
|
||||
if obstacleCrowdsObjective(tc.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
continue;
|
||||
end
|
||||
|
||||
badCandidate = false;
|
||||
end
|
||||
end
|
||||
|
||||
% Add agents individually, ensuring that each addition does not
|
||||
% invalidate the initialization setup
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
initInvalid = true;
|
||||
while initInvalid
|
||||
candidatePos = [tc.objective.groundPos, 0];
|
||||
% Generate a random position for the agent based on
|
||||
% existing agent positions
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
% domain
|
||||
if ~tc.domain.contains(candidatePos)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the candidate position does not crowd
|
||||
% the sensing objective and create boring scenarios
|
||||
if agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that there exist unobstructed lines of sight at
|
||||
% appropriate ranges to form a connected communications
|
||||
% graph between the agents
|
||||
connections = false(1, ii - 1);
|
||||
for jj = 1:(ii - 1)
|
||||
if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange
|
||||
% Check new agent position against all existing
|
||||
% agent positions for communications range
|
||||
connections(jj) = true;
|
||||
for kk = 1:size(tc.obstacles, 1)
|
||||
if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos)
|
||||
connections(jj) = false;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% New agent must be connected to an existing agent to
|
||||
% be valid
|
||||
if ii ~= 1 && ~any(connections)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Initialize candidate agent
|
||||
candidateGeometry = rectangularPrism;
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), eye(3),candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), @(r) 0.5, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Make sure candidate agent doesn't collide with
|
||||
% domain
|
||||
violation = false;
|
||||
for jj = 1:size(newAgent.collisionGeometry.vertices, 1)
|
||||
% Check if collision geometry exits domain
|
||||
if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3))
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure candidate doesn't collide with obstacles
|
||||
violation = false;
|
||||
for kk = 1:size(tc.obstacles, 1)
|
||||
if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry)
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure candidate doesn't collide with existing
|
||||
% agents
|
||||
violation = false;
|
||||
for kk = 1:(ii - 1)
|
||||
if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry)
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Candidate agent is valid, store to pass in to sim
|
||||
initInvalid = false;
|
||||
tc.agents{ii} = newAgent;
|
||||
end
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.maxIter, tc.obstacles);
|
||||
|
||||
% Plot domain
|
||||
f = tc.testClass.domain.plotWireframe;
|
||||
|
||||
% Set plotting limits to focus on the domain
|
||||
xlim([tc.testClass.domain.minCorner(1), tc.testClass.domain.maxCorner(1)]);
|
||||
ylim([tc.testClass.domain.minCorner(2), tc.testClass.domain.maxCorner(2)]);
|
||||
zlim([tc.testClass.domain.minCorner(3), tc.testClass.domain.maxCorner(3)]);
|
||||
|
||||
% Plot obstacles
|
||||
for ii = 1:size(tc.testClass.obstacles, 1)
|
||||
tc.testClass.obstacles{ii}.plotWireframe(f);
|
||||
end
|
||||
|
||||
% Plot objective gradient
|
||||
f = tc.testClass.objective.plot(f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
for ii = 1:size(tc.testClass.agents, 1)
|
||||
f = tc.testClass.agents{ii}.plot(f);
|
||||
f = tc.testClass.agents{ii}.collisionGeometry.plotWireframe(f);
|
||||
end
|
||||
|
||||
% Plot communication links
|
||||
f = tc.testClass.plotNetwork(f);
|
||||
|
||||
% Plot abstract network graph
|
||||
f = tc.testClass.plotGraph(f);
|
||||
|
||||
% Run simulation loop
|
||||
tc.testClass.run();
|
||||
|
||||
end
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user