refactored sensing objective into domain, random inits
This commit is contained in:
@@ -1,22 +1,21 @@
|
||||
function obj = initialize(obj, objectiveFunction, footprint, groundAlt, discretizationStep)
|
||||
function obj = initialize(obj, objectiveFunction, domain, discretizationStep)
|
||||
arguments (Input)
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
|
||||
footprint (:, 2) double;
|
||||
groundAlt (1, 1) double = 0;
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
discretizationStep (1, 1) double = 1;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
end
|
||||
|
||||
obj.groundAlt = groundAlt;
|
||||
obj.groundAlt = domain.minCorner(3);
|
||||
|
||||
% Extract footprint limits
|
||||
xMin = min(footprint(:, 1));
|
||||
xMax = max(footprint(:, 1));
|
||||
yMin = min(footprint(:, 2));
|
||||
yMax = max(footprint(:, 2));
|
||||
xMin = min(domain.footprint(:, 1));
|
||||
xMax = max(domain.footprint(:, 1));
|
||||
yMin = min(domain.footprint(:, 2));
|
||||
yMax = max(domain.footprint(:, 2));
|
||||
|
||||
xGrid = unique([xMin:discretizationStep:xMax, xMax]);
|
||||
yGrid = unique([yMin:discretizationStep:yMax, yMax]);
|
||||
|
||||
27
@sensingObjective/initializeRandomMvnpdf.m
Normal file
27
@sensingObjective/initializeRandomMvnpdf.m
Normal file
@@ -0,0 +1,27 @@
|
||||
function obj = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
protectedRange (1, 1) double = 1;
|
||||
discretizationStep (1, 1) double = 1;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
|
||||
end
|
||||
|
||||
% Set random objective position
|
||||
mu = domain.minCorner;
|
||||
while domain.distance(mu) < protectedRange
|
||||
mu = domain.random();
|
||||
end
|
||||
mu = mu(1:2);
|
||||
|
||||
% Set random distribution parameters
|
||||
sig = [2 + rand * 2, 1; 1, 2 + rand * 2];
|
||||
|
||||
% Set up random bivariate normal distribution function
|
||||
objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu, sig);
|
||||
|
||||
% Regular initialization
|
||||
obj = obj.initialize(objectiveFunction, domain, discretizationStep);
|
||||
end
|
||||
@@ -18,7 +18,6 @@ function f = plot(obj, ind, f)
|
||||
o.HitTest = 'off';
|
||||
o.PickableParts = 'none';
|
||||
hold(f.CurrentAxes, "off");
|
||||
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = surf(f.Children(1).Children(ind(1)), obj.X, obj.Y, repmat(obj.groundAlt, size(obj.X)), obj.values ./ max(obj.values, [], "all"), 'EdgeColor', 'none');
|
||||
|
||||
@@ -12,7 +12,8 @@ classdef sensingObjective
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj] = initialize(obj, objectiveFunction, footprint, groundAlt, discretizationStep);
|
||||
[obj] = initialize(obj, objectiveFunction, domain, discretizationStep);
|
||||
[obj] = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep);
|
||||
[f ] = plot(obj, ind, f);
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user