lots of cleanup and simplification in test case construction
This commit is contained in:
@@ -9,14 +9,9 @@ classdef agent
|
||||
% State
|
||||
lastPos = NaN(1, 3); % position from previous timestep
|
||||
pos = NaN(1, 3); % current position
|
||||
vel = NaN(1, 3); % current velocity
|
||||
pan = NaN; % pan angle
|
||||
tilt = NaN; % tilt angle
|
||||
|
||||
% Collision
|
||||
collisionGeometry;
|
||||
barrierFunction;
|
||||
dBarrierFunction;
|
||||
|
||||
% FOV cone
|
||||
fovGeometry;
|
||||
@@ -39,7 +34,7 @@ classdef agent
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj] = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label);
|
||||
[obj] = initialize(obj, pos, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label);
|
||||
[obj] = run(obj, domain, partitioning, t, index, agents);
|
||||
[partitioning] = partition(obj, agents, objective)
|
||||
[obj, f] = plot(obj, ind, f);
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, comRange, maxIter, label, plotCommsGeometry)
|
||||
function obj = initialize(obj, pos, collisionGeometry, sensorModel, comRange, maxIter, label, plotCommsGeometry)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
pos (1, 3) double;
|
||||
vel (1, 3) double;
|
||||
pan (1, 1) double;
|
||||
tilt (1, 1) double;
|
||||
collisionGeometry (1, 1) {mustBeGeometry};
|
||||
sensorModel (1, 1) {mustBeSensor};
|
||||
comRange (1, 1) double;
|
||||
@@ -17,9 +14,6 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
|
||||
end
|
||||
|
||||
obj.pos = pos;
|
||||
obj.vel = vel;
|
||||
obj.pan = pan;
|
||||
obj.tilt = tilt;
|
||||
obj.collisionGeometry = collisionGeometry;
|
||||
obj.sensorModel = sensorModel;
|
||||
obj.label = label;
|
||||
|
||||
@@ -10,7 +10,7 @@ function [partitioning] = partition(obj, agents, objective)
|
||||
|
||||
% Assess sensing performance of each agent at each sample point
|
||||
% in the domain
|
||||
agentPerformances = cellfun(@(x) reshape(x.sensorModel.sensorPerformance(x.pos, x.pan, x.tilt, [objective.X(:), objective.Y(:), zeros(size(objective.X(:)))]), size(objective.X)), agents, 'UniformOutput', false);
|
||||
agentPerformances = cellfun(@(x) reshape(x.sensorModel.sensorPerformance(x.pos, [objective.X(:), objective.Y(:), zeros(size(objective.X(:)))]), size(objective.X)), agents, 'UniformOutput', false);
|
||||
agentPerformances{end + 1} = objective.sensorPerformanceMinimum * ones(size(agentPerformances{end})); % add additional layer to represent the threshold that has to be cleared for assignment to any partiton
|
||||
agentPerformances = cat(3, agentPerformances{:});
|
||||
|
||||
|
||||
@@ -13,6 +13,10 @@ function obj = run(obj, domain, partitioning, timestepIndex, index, agents)
|
||||
|
||||
% Collect objective function values across partition
|
||||
partitionMask = partitioning == index;
|
||||
if ~unique(partitionMask)
|
||||
% This agent has no partition, maintain current state
|
||||
return;
|
||||
end
|
||||
objectiveValues = domain.objective.values(partitionMask); % f(omega) on W_n
|
||||
|
||||
% Compute sensor performance on partition
|
||||
@@ -30,7 +34,7 @@ function obj = run(obj, domain, partitioning, timestepIndex, index, agents)
|
||||
% Compute performance values on partition
|
||||
if ii < 5
|
||||
% Compute sensing performance
|
||||
sensorValues = obj.sensorModel.sensorPerformance(pos, obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
sensorValues = obj.sensorModel.sensorPerformance(pos, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
% Objective performance does not change for 0, +/- X, Y steps.
|
||||
% Those values are computed once before the loop and are only
|
||||
% recomputed when +/- Z steps are applied
|
||||
@@ -45,7 +49,7 @@ function obj = run(obj, domain, partitioning, timestepIndex, index, agents)
|
||||
% Recompute partiton-derived performance values for sensing
|
||||
maskedX = domain.objective.X(partitionMask);
|
||||
maskedY = domain.objective.Y(partitionMask);
|
||||
sensorValues = obj.sensorModel.sensorPerformance(pos, obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
sensorValues = obj.sensorModel.sensorPerformance(pos, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
end
|
||||
|
||||
% Rearrange data into image arrays
|
||||
|
||||
@@ -5,6 +5,13 @@ function updatePlots(obj)
|
||||
arguments (Output)
|
||||
end
|
||||
|
||||
% Find change in agent position since last timestep
|
||||
deltaPos = obj.pos - obj.lastPos;
|
||||
if all(isnan(deltaPos)) || all(deltaPos == zeros(1, 3))
|
||||
% Agent did not move, so nothing has to move on the plots
|
||||
return;
|
||||
end
|
||||
|
||||
% Scatterplot point positions
|
||||
for ii = 1:size(obj.scatterPoints, 1)
|
||||
obj.scatterPoints(ii).XData = obj.pos(1);
|
||||
@@ -12,9 +19,6 @@ function updatePlots(obj)
|
||||
obj.scatterPoints(ii).ZData = obj.pos(3);
|
||||
end
|
||||
|
||||
% Find change in agent position since last timestep
|
||||
deltaPos = obj.pos - obj.lastPos;
|
||||
|
||||
% Collision geometry edges
|
||||
for jj = 1:size(obj.collisionGeometry.lines, 2)
|
||||
% Update plotting
|
||||
|
||||
Reference in New Issue
Block a user