4 Commits

Author SHA1 Message Date
c5a7634d37 added video writing feature 2025-10-27 23:13:33 -07:00
bbefb6111b geometries move in plots as sim runs 2025-10-27 22:38:39 -07:00
ade795b3ae implemented basic gradient ascent 2025-10-27 21:29:54 -07:00
db0ce2d42d fixed bug allowing obstructed coms connections 2025-10-27 20:45:37 -07:00
15 changed files with 460 additions and 63 deletions

3
.gitignore vendored
View File

@@ -38,3 +38,6 @@ codegen/
# SimBiology backup files
*.sbproj.backup
*.sbproj.bak
# Sandbox contents
sandbox/*

84
agent.m
View File

@@ -6,27 +6,34 @@ classdef agent
% Sensor
sensingFunction = @(r) 0.5; % probability of detection as a function of range
sensingLength = 0.05; % length parameter used by sensing function
% State
pos = NaN(1, 3);
vel = NaN(1, 3);
cBfromC = NaN(3); % DCM body from sim cartesian (assume fixed for now)
lastPos = NaN(1, 3); % position from previous timestep
pos = NaN(1, 3); % current position
vel = NaN(1, 3); % current velocity
cBfromC = NaN(3); % current DCM body from sim cartesian (assume fixed for now)
% Collision
collisionGeometry;
% Communication
comRange = NaN;
% Plotting
scatterPoints;
end
methods (Access = public)
function obj = initialize(obj, pos, vel, cBfromC, collisionGeometry, comRange, index, label)
function obj = initialize(obj, pos, vel, cBfromC, collisionGeometry, sensingFunction, sensingLength, comRange, index, label)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'agent')};
pos (1, 3) double;
vel (1, 3) double;
cBfromC (3, 3) double {mustBeDcm};
collisionGeometry (1, 1) {mustBeGeometry};
sensingFunction (1, 1) {mustBeA(sensingFunction, 'function_handle')} = @(r) 0.5;
sensingLength (1, 1) double = NaN;
comRange (1, 1) double = NaN;
index (1, 1) double = NaN;
label (1, 1) string = "";
@@ -39,16 +46,72 @@ classdef agent
obj.vel = vel;
obj.cBfromC = cBfromC;
obj.collisionGeometry = collisionGeometry;
obj.sensingFunction = sensingFunction;
obj.sensingLength = sensingLength;
obj.comRange = comRange;
obj.index = index;
obj.label = label;
end
function f = plot(obj, f)
function obj = run(obj, objectiveFunction, domain)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'agent')};
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
domain (1, 1) {mustBeGeometry};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'agent')};
end
% Do sensing to determine target position
nextPos = obj.sensingFunction(objectiveFunction, domain, obj.pos, obj.sensingLength);
% Move to next position
% (dynamics not modeled at this time)
obj.lastPos = obj.pos;
obj.pos = nextPos;
% Calculate movement
d = obj.pos - obj.collisionGeometry.center;
% Reinitialize collision geometry in the new position
obj.collisionGeometry = obj.collisionGeometry.initialize([obj.collisionGeometry.minCorner; obj.collisionGeometry.maxCorner] + d, obj.collisionGeometry.tag, obj.collisionGeometry.label);
end
function updatePlots(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'agent')};
end
arguments (Output)
end
% Scatterplot point positions
for ii = 1:size(obj.scatterPoints, 1)
obj.scatterPoints(ii).XData = obj.pos(1);
obj.scatterPoints(ii).YData = obj.pos(2);
obj.scatterPoints(ii).ZData = obj.pos(3);
end
% Find change in agent position since last timestep
deltaPos = obj.pos - obj.lastPos;
% Collision geometry edges
for jj = 1:size(obj.collisionGeometry.lines, 2)
% Update plotting
for ii = 1:size(obj.collisionGeometry.lines(:, jj), 1)
obj.collisionGeometry.lines(ii, jj).XData = obj.collisionGeometry.lines(ii, jj).XData + deltaPos(1);
obj.collisionGeometry.lines(ii, jj).YData = obj.collisionGeometry.lines(ii, jj).YData + deltaPos(2);
obj.collisionGeometry.lines(ii, jj).ZData = obj.collisionGeometry.lines(ii, jj).ZData + deltaPos(3);
end
end
% Network connections
end
function [obj, f] = plot(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'agent')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'agent')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
@@ -63,10 +126,15 @@ classdef agent
% Check if this is a tiled layout figure
if strcmp(f.Children(1).Type, 'tiledlayout')
% Add to other perspectives
copyobj(o, f.Children(1).Children(2));
copyobj(o, f.Children(1).Children(3));
copyobj(o, f.Children(1).Children(5));
o = [o; copyobj(o(1), f.Children(1).Children(2))];
o = [o; copyobj(o(1), f.Children(1).Children(3))];
o = [o; copyobj(o(1), f.Children(1).Children(5))];
end
obj.scatterPoints = o;
% Plot collision geometry
[obj.collisionGeometry, f] = obj.collisionGeometry.plotWireframe(f);
end
end
end

View File

@@ -9,7 +9,7 @@ function f = firstPlotSetup(f)
grid(f.Children(1).Children(1), "on");
view(f.Children(1).Children(1), 0, 90);
xlabel(f.Children(1).Children(1), "X"); ylabel(f.Children(1).Children(1), "Y");
title("Top-down Perspective");
title(f.Children(1).Children(1), "Top-down Perspective");
% Communications graph
nexttile(3, [1, 1]);
@@ -17,33 +17,33 @@ function f = firstPlotSetup(f)
axis(f.Children(1).Children(1), "image");
grid(f.Children(1).Children(1), "off");
view(f.Children(1).Children(1), 0, 0);
title("Network Graph");
title(f.Children(1).Children(1), "Network Graph");
% 3D view
title("3D Perspective");
nexttile(4, [2, 2]);
axes(f.Children(1).Children(1));
axis(f.Children(1).Children(1), "image");
grid(f.Children(1).Children(1), "on");
view(f.Children(1).Children(1), 3);
xlabel(f.Children(1).Children(1), "X"); ylabel(f.Children(1).Children(1), "Y"); zlabel(f.Children(1).Children(1), "Z");
title(f.Children(1).Children(1), "3D Perspective");
% Side-on view
title("Side-on Perspective");
nexttile(6, [2, 1]);
axes(f.Children(1).Children(1));
axis(f.Children(1).Children(1), "image");
grid(f.Children(1).Children(1), "on");
view(f.Children(1).Children(1), 90, 0);
ylabel(f.Children(1).Children(1), "Y"); zlabel(f.Children(1).Children(1), "Z");
title(f.Children(1).Children(1), "Side-on Perspective");
% Front-on view
title("Front-on Perspective");
nexttile(10, [1, 2]);
axes(f.Children(1).Children(1));
axis(f.Children(1).Children(1), "image");
grid(f.Children(1).Children(1), "on");
view(f.Children(1).Children(1), 0, 0);
xlabel(f.Children(1).Children(1), "X"); zlabel(f.Children(1).Children(1), "Z");
title(f.Children(1).Children(1), "Front-on Perspective");
end
end

View File

@@ -1,23 +1,25 @@
classdef rectangularPrism
% Rectangular prism geometry
properties (SetAccess = private, GetAccess = public)
% Meta
tag = REGION_TYPE.INVALID;
label = "";
% Spatial
minCorner = NaN(1, 3);
maxCorner = NaN(1, 3);
dimensions = NaN(1, 3);
center = NaN;
footprint = NaN(4, 2);
% Graph
vertices = NaN(8, 3);
edges = [1 2; 2 3; 3 4; 4 1; % bottom square
5 6; 6 8; 8 7; 7 5; % top square
1 5; 2 6; 3 8; 4 7]; % vertical edges
footprint = NaN(4, 2);
% Plotting
lines;
end
methods (Access = public)
@@ -161,12 +163,13 @@ classdef rectangularPrism
c = (tmax >= 0) && (tmin <= 1);
end
function f = plotWireframe(obj, f)
function [obj, f] = plotWireframe(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
@@ -186,10 +189,12 @@ classdef rectangularPrism
% Check if this is a tiled layout figure
if strcmp(f.Children(1).Type, 'tiledlayout')
% Add to other perspectives
copyobj(o, f.Children(1).Children(2));
copyobj(o, f.Children(1).Children(3));
copyobj(o, f.Children(1).Children(5));
o = [o, copyobj(o(:, 1), f.Children(1).Children(2))];
o = [o, copyobj(o(:, 1), f.Children(1).Children(3))];
o = [o, copyobj(o(:, 1), f.Children(1).Children(5))];
end
obj.lines = o;
end
end
end

160
miSim.m
View File

@@ -3,6 +3,8 @@ classdef miSim
% Simulation parameters
properties (SetAccess = private, GetAccess = public)
timestep = NaN; % delta time interval for simulation iterations
maxIter = NaN; % maximum number of simulation iterations
domain = rectangularPrism;
objective = sensingObjective;
obstacles = cell(0, 1); % geometries that define obstacles within the domain
@@ -10,34 +12,149 @@ classdef miSim
adjacency = NaN; % Adjacency matrix representing communications network graph
end
properties (Access = private)
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist.mp4')));
connectionsPlot; % objects for lines connecting agents in spatial plots
graphPlot; % objects for abstract network graph plot
end
methods (Access = public)
function obj = initialize(obj, domain, objective, agents, obstacles)
function [obj, f] = initialize(obj, domain, objective, agents, timestep, maxIter, obstacles)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
domain (1, 1) {mustBeGeometry};
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
agents (:, 1) cell {mustBeAgents};
timestep (:, 1) double = 0.05;
maxIter (:, 1) double = 1000;
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
%% Define domain
% Define simulation time parameters
obj.timestep = timestep;
obj.maxIter = maxIter;
% Define domain
obj.domain = domain;
%% Add geometries representing obstacles within the domain
% Add geometries representing obstacles within the domain
obj.obstacles = obstacles;
%% Define objective
% Define objective
obj.objective = objective;
%% Define agents
% Define agents
obj.agents = agents;
%% Compute adjacency matrix
% Compute adjacency matrix
obj = obj.updateAdjacency();
% Set up initial plot
% Set up axes arrangement
% Plot domain
[obj.domain, f] = obj.domain.plotWireframe();
% Set plotting limits to focus on the domain
xlim([obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
ylim([obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim([obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
% Plot obstacles
for ii = 1:size(obj.obstacles, 1)
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(f);
end
% Plot objective gradient
f = obj.objective.plot(f);
% Plot agents and their collision geometries
for ii = 1:size(obj.agents, 1)
[obj.agents{ii}, f] = obj.agents{ii}.plot(f);
end
% Plot communication links
[obj, f] = obj.plotConnections(f);
% Plot abstract network graph
[obj, f] = obj.plotGraph(f);
end
function [obj, f] = run(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Create axes if they don't already exist
f = firstPlotSetup(f);
% Set up times to iterate over
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
% Start video writer
obj.v.FrameRate = 1/obj.timestep;
obj.v.Quality = 90;
obj.v.open();
for ii = 1:size(times, 1)
% Display current sim time
t = times(ii);
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
% Iterate over agents to simulate their motion
for jj = 1:size(obj.agents, 1)
obj.agents{jj} = obj.agents{jj}.run(obj.objective.objectiveFunction, obj.domain);
end
% Update adjacency matrix
obj = obj.updateAdjacency;
% Update plots
[obj, f] = obj.updatePlots(f);
% Write frame in to video
I = getframe(f);
obj.v.writeVideo(I);
end
% Close video file
obj.v.close();
end
function [obj, f] = updatePlots(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Update agent positions, collision geometries
for ii = 1:size(obj.agents, 1)
obj.agents{ii}.updatePlots();
end
% The remaining updates might be possible to do in a clever way
% that moves existing lines instead of clearing and
% re-plotting, which is much better for performance boost
% Update agent connections plot
delete(obj.connectionsPlot);
[obj, f] = obj.plotConnections(f);
% Update network graph plot
delete(obj.graphPlot);
[obj, f] = obj.plotGraph(f);
drawnow;
end
function obj = updateAdjacency(obj)
arguments (Input)
@@ -54,19 +171,26 @@ classdef miSim
for ii = 2:size(A, 1)
for jj = 1:(ii - 1)
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
% Make sure that obstacles don't obstruct the line
% of sight, breaking the connection
for kk = 1:size(obj.obstacles, 1)
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
A(ii, jj) = true;
end
end
end
end
end
obj.adjacency = A | A';
end
function f = plotNetwork(obj, f)
function [obj, f] = plotConnections(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
@@ -86,36 +210,34 @@ classdef miSim
% Plot the connections
hold(f.CurrentAxes, "on");
o = plot3(X, Y, Z, 'Color', 'g', 'LineWidth', 1, 'LineStyle', '--');
o = plot3(X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
hold(f.CurrentAxes, "off");
% Check if this is a tiled layout figure
if strcmp(f.Children(1).Type, 'tiledlayout')
% Add to other plots
copyobj(o, f.Children(1).Children(2));
copyobj(o, f.Children(1).Children(3));
copyobj(o, f.Children(1).Children(5));
o = [o, copyobj(o(:, 1), f.Children(1).Children(2))];
o = [o, copyobj(o(:, 1), f.Children(1).Children(3))];
o = [o, copyobj(o(:, 1), f.Children(1).Children(5))];
end
obj.connectionsPlot = o;
end
function f = plotGraph(obj, f)
function [obj, f] = plotGraph(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Form graph from adjacency matrix
G = graph(obj.adjacency, 'omitselfloops');
% Check if this is a tiled layout figure
if strcmp(f.Children(1).Type, 'tiledlayout')
o = plot(f.Children(1).Children(4), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k');
else
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k');
end
% Plot graph object
obj.graphPlot = plot(f.Children(1).Children(4), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
end
end

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensingFunctions" Type="Relative"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="9c9ce3cb-5989-41e8-a20d-358a95c08b20" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sandbox" Type="Relative"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="ff13e617-a2ad-49b1-a9b5-668ac2cffc4a" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="1" type="DIR_SIGNIFIER"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sandbox" type="File"/>

View File

@@ -0,0 +1,44 @@
function nextPos = basicGradientAscent(objectiveFunction, domain, pos, r)
arguments (Input)
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
domain (1, 1) {mustBeGeometry};
pos (1, 3) double;
r (1, 1) double;
end
arguments (Output)
nextPos(1, 3) double;
end
% Evaluate objective at position offsets +/-[r, 0, 0] and +/-[0, r, 0]
currentPos = pos(1:2);
neighborPos = [currentPos(1) + r, currentPos(2); ... % (+x)
currentPos(1), currentPos(2) + r; ... % (+y)
currentPos(1) - r, currentPos(2); ... % (-x)
currentPos(1), currentPos(2) - r; ... % (-y)
];
% Check for neighbor positions that fall outside of the domain
outOfBounds = false(size(neighborPos, 1), 1);
for ii = 1:size(neighborPos, 1)
if ~domain.contains([neighborPos(ii, :), 0])
outOfBounds(ii) = true;
end
end
% Replace out of bounds positions with inoffensive in-bounds positions
neighborPos(outOfBounds, 1:3) = repmat(pos, sum(outOfBounds), 1);
% Sense values at selected positions
neighborValues = [objectiveFunction(neighborPos(1, 1), neighborPos(1, 2)), ... % (+x)
objectiveFunction(neighborPos(2, 1), neighborPos(2, 2)), ... % (+y)
objectiveFunction(neighborPos(3, 1), neighborPos(3, 2)), ... % (-x)
objectiveFunction(neighborPos(4, 1), neighborPos(4, 2)), ... % (-y)
];
% Prevent out of bounds locations from ever possibly being selected
neighborValues(outOfBounds) = 0;
% Select next position by maximum sensed value
nextPos = neighborPos(neighborValues == max(neighborValues), :);
nextPos = [nextPos(1, 1:2), pos(3)]; % just in case two get selected, simply pick one
end

View File

@@ -4,6 +4,8 @@ classdef test_miSim < matlab.unittest.TestCase
% Domain
domain = rectangularPrism; % domain geometry
maxIter = 1000;
timestep = 0.05
% Obstacles
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
@@ -20,6 +22,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Agents
minAgents = 3; % Minimum number of agents to be randomly generated
maxAgents = 9; % Maximum number of agents to be randomly generated
sensingLength = 0.05; % length parameter used by sensing function
agents = cell(0, 1);
% Collision
@@ -74,7 +77,7 @@ classdef test_miSim < matlab.unittest.TestCase
methods (Test)
% Test methods
function misim_initialization(tc)
% randomly create 2-3 obstacles
% randomly create obstacles
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
tc.obstacles = cell(nGeom, 1);
@@ -184,7 +187,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize candidate agent
candidateGeometry = rectangularPrism;
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), eye(3),candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), tc.comRange, ii, sprintf("Agent %d", ii));
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), eye(3),candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), @(r) 0.5, tc.sensingLength, tc.comRange, ii, sprintf("Agent %d", ii));
% Make sure candidate agent doesn't collide with
% domain
@@ -232,35 +235,171 @@ classdef test_miSim < matlab.unittest.TestCase
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.obstacles);
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.maxIter, tc.obstacles);
end
function misim_run(tc)
% randomly create obstacles
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
tc.obstacles = cell(nGeom, 1);
% Plot domain
f = tc.testClass.domain.plotWireframe;
% Iterate over obstacles to initialize
for ii = 1:size(tc.obstacles, 1)
badCandidate = true;
while badCandidate
% Instantiate a rectangular prism obstacle
tc.obstacles{ii} = rectangularPrism;
% Set plotting limits to focus on the domain
xlim([tc.testClass.domain.minCorner(1), tc.testClass.domain.maxCorner(1)]);
ylim([tc.testClass.domain.minCorner(2), tc.testClass.domain.maxCorner(2)]);
zlim([tc.testClass.domain.minCorner(3), tc.testClass.domain.maxCorner(3)]);
% Randomly generate min corner for the obstacle
candidateMinCorner = tc.domain.random();
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
% Plot obstacles
for ii = 1:size(tc.testClass.obstacles, 1)
tc.testClass.obstacles{ii}.plotWireframe(f);
% Randomly select a corresponding maximum corner that
% satisfies min/max obstacle size specifications
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
% Initialize obstacle
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
% Check if the obstacle intersects with any existing
% obstacles
violation = false;
for kk = 1:(ii - 1)
if geometryIntersects(tc.obstacles{kk}, tc.obstacles{ii})
violation = true;
break;
end
end
if violation
continue;
end
% Plot objective gradient
f = tc.testClass.objective.plot(f);
% Plot agents and their collision geometries
for ii = 1:size(tc.testClass.agents, 1)
f = tc.testClass.agents{ii}.plot(f);
f = tc.testClass.agents{ii}.collisionGeometry.plotWireframe(f);
% Make sure that the obstacles are fully contained by
% the domain
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
continue;
end
% Plot communication links
f = tc.testClass.plotNetwork(f);
% Make sure that the obstacles don't cover the sensing
% objective
if obstacleCoversObjective(tc.objective, tc.obstacles{ii})
continue;
end
% Plot abstract network graph
f = tc.testClass.plotGraph(f);
% Make sure that the obstacles aren't too close to the
% sensing objective
if obstacleCrowdsObjective(tc.objective, tc.obstacles{ii}, tc.protectedRange)
continue;
end
badCandidate = false;
end
end
% Add agents individually, ensuring that each addition does not
% invalidate the initialization setup
for ii = 1:size(tc.agents, 1)
initInvalid = true;
while initInvalid
candidatePos = [tc.objective.groundPos, 0];
% Generate a random position for the agent based on
% existing agent positions
if ii == 1
while agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
end
% Make sure that the candidate position is within the
% domain
if ~tc.domain.contains(candidatePos)
continue;
end
% Make sure that the candidate position does not crowd
% the sensing objective and create boring scenarios
if agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
continue;
end
% Make sure that there exist unobstructed lines of sight at
% appropriate ranges to form a connected communications
% graph between the agents
connections = false(1, ii - 1);
for jj = 1:(ii - 1)
if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange
% Check new agent position against all existing
% agent positions for communications range
connections(jj) = true;
for kk = 1:size(tc.obstacles, 1)
if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos)
connections(jj) = false;
end
end
end
end
% New agent must be connected to an existing agent to
% be valid
if ii ~= 1 && ~any(connections)
continue;
end
% Initialize candidate agent
candidateGeometry = rectangularPrism;
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), eye(3),candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), @basicGradientAscent, tc.sensingLength, tc.comRange, ii, sprintf("Agent %d", ii));
% Make sure candidate agent doesn't collide with
% domain
violation = false;
for jj = 1:size(newAgent.collisionGeometry.vertices, 1)
% Check if collision geometry exits domain
if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3))
violation = true;
break;
end
end
if violation
continue;
end
% Make sure candidate doesn't collide with obstacles
violation = false;
for kk = 1:size(tc.obstacles, 1)
if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry)
violation = true;
break;
end
end
if violation
continue;
end
% Make sure candidate doesn't collide with existing
% agents
violation = false;
for kk = 1:(ii - 1)
if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry)
violation = true;
break;
end
end
if violation
continue;
end
% Candidate agent is valid, store to pass in to sim
initInvalid = false;
tc.agents{ii} = newAgent;
end
end
% Initialize the simulation
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.maxIter, tc.obstacles);
% Run simulation loop
[tc.testClass, f] = tc.testClass.run(f);
end
end
end