Compare commits
7 Commits
a19209f736
...
097cdf0e57
| Author | SHA1 | Date | |
|---|---|---|---|
| 097cdf0e57 | |||
| bf4fc83749 | |||
| 8b0fc11998 | |||
| 8dd1e012ad | |||
| e2d85ce6b9 | |||
| 319041ce5e | |||
| 39bf75a95b |
4
.gitignore
vendored
4
.gitignore
vendored
@@ -41,3 +41,7 @@ codegen/
|
||||
|
||||
# Sandbox contents
|
||||
sandbox/*
|
||||
|
||||
# Videos
|
||||
*.mp4
|
||||
*.avi
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
function [obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
||||
function obj = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
@@ -11,12 +11,11 @@ function [obj, f] = initialize(obj, domain, objective, agents, timestep, partito
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Define simulation time parameters
|
||||
obj.timestep = timestep;
|
||||
obj.maxIter = maxIter;
|
||||
obj.maxIter = maxIter - 1;
|
||||
|
||||
% Define domain
|
||||
obj.domain = domain;
|
||||
@@ -34,9 +33,17 @@ function [obj, f] = initialize(obj, domain, objective, agents, timestep, partito
|
||||
% Compute adjacency matrix
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
% Set up times to iterate over
|
||||
obj.times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
||||
obj.partitioningTimes = obj.times(obj.partitioningFreq:obj.partitioningFreq:size(obj.times, 1));
|
||||
|
||||
% Prepare performance data store (at t = 0, all have 0 performance)
|
||||
obj.fPerf = figure;
|
||||
obj.perf = [zeros(size(obj.agents, 1) + 1, 1), NaN(size(obj.agents, 1) + 1, size(obj.partitioningTimes, 1) - 1)];
|
||||
|
||||
% Create initial partitioning
|
||||
obj = obj.partition();
|
||||
|
||||
% Set up plots showing initialized state
|
||||
[obj, f] = obj.plot();
|
||||
obj = obj.plot();
|
||||
end
|
||||
@@ -13,14 +13,25 @@ classdef miSim
|
||||
adjacency = NaN; % Adjacency matrix representing communications network graph
|
||||
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
||||
partitioning = NaN;
|
||||
performance = NaN; % current cumulative sensor performance
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
% Sim
|
||||
t = NaN; % current sim time
|
||||
perf; % sensor performance timeseries array
|
||||
times;
|
||||
partitioningTimes;
|
||||
|
||||
% Plot objects
|
||||
f = firstPlotSetup(); % main plotting tiled layout figure
|
||||
connectionsPlot; % objects for lines connecting agents in spatial plots
|
||||
graphPlot; % objects for abstract network graph plot
|
||||
partitionPlot; % objects for partition plot
|
||||
|
||||
fPerf; % performance plot figure
|
||||
performancePlot; % objects for sensor performance plot
|
||||
|
||||
% Indicies for various plot types in the main tiled layout figure
|
||||
spatialPlotIndices = [6, 4, 3, 2];
|
||||
objectivePlotIndices = [6, 4];
|
||||
@@ -29,15 +40,15 @@ classdef miSim
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
|
||||
[obj, f] = run(obj, f);
|
||||
[obj] = partition(obj);
|
||||
[obj] = updateAdjacency(obj);
|
||||
[obj, f] = plot(obj);
|
||||
[obj, f] = plotConnections(obj, ind, f);
|
||||
[obj, f] = plotPartitions(obj, ind, f);
|
||||
[obj, f] = plotGraph(obj, ind, f);
|
||||
[obj, f] = updatePlots(obj, f, updatePartitions);
|
||||
[obj] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
|
||||
[obj] = run(obj);
|
||||
[obj] = partition(obj);
|
||||
[obj] = updateAdjacency(obj);
|
||||
[obj] = plot(obj);
|
||||
[obj] = plotConnections(obj);
|
||||
[obj] = plotPartitions(obj);
|
||||
[obj] = plotGraph(obj);
|
||||
[obj] = updatePlots(obj, updatePartitions);
|
||||
end
|
||||
methods (Access = private)
|
||||
[v] = setupVideoWriter(obj);
|
||||
|
||||
@@ -15,13 +15,22 @@ function obj = partition(obj)
|
||||
% Get highest performance value at each point
|
||||
[~, idx] = max(agentPerformances, [], 3);
|
||||
|
||||
% Collect agent indices in the same way
|
||||
% Collect agent indices in the same way as performance
|
||||
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
||||
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
|
||||
agentInds = cat(3, agentInds{:});
|
||||
|
||||
% Get highest performing agent's index
|
||||
[m,n,~] = size(agentInds);
|
||||
[i,j] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), i, j, idx));
|
||||
[jj,kk] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
|
||||
|
||||
% Get individual agent sensor performance
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
obj.perf(ii, nowIdx) = sum(agentPerformances(sub2ind(size(agentInds), jj, kk, ii)), 'all');
|
||||
end
|
||||
|
||||
% Current total performance
|
||||
obj.perf(end, nowIdx) = sum(obj.perf(1:(end - 1), nowIdx));
|
||||
end
|
||||
@@ -1,41 +1,43 @@
|
||||
function [obj, f] = plot(obj)
|
||||
function obj = plot(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Plot domain
|
||||
[obj.domain, f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
||||
[obj.domain, obj.f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
||||
|
||||
% Plot obstacles
|
||||
for ii = 1:size(obj.obstacles, 1)
|
||||
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, f);
|
||||
[obj.obstacles{ii}, obj.f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, obj.f);
|
||||
end
|
||||
|
||||
% Plot objective gradient
|
||||
f = obj.domain.objective.plot(obj.objectivePlotIndices, f);
|
||||
obj.f = obj.domain.objective.plot(obj.objectivePlotIndices, obj.f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
[obj.agents{ii}, f] = obj.agents{ii}.plot(obj.spatialPlotIndices, f);
|
||||
[obj.agents{ii}, obj.f] = obj.agents{ii}.plot(obj.spatialPlotIndices, obj.f);
|
||||
end
|
||||
|
||||
% Plot communication links
|
||||
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
||||
obj = obj.plotConnections();
|
||||
|
||||
% Plot abstract network graph
|
||||
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
||||
obj = obj.plotGraph();
|
||||
|
||||
% Plot domain partitioning
|
||||
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
||||
obj = obj.plotPartitions();
|
||||
|
||||
% Enforce plot limits
|
||||
for ii = 1:size(obj.spatialPlotIndices, 2)
|
||||
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
end
|
||||
|
||||
% Plot performance
|
||||
obj = obj.plotPerformance();
|
||||
end
|
||||
@@ -1,12 +1,9 @@
|
||||
function [obj, f] = plotConnections(obj, ind, f)
|
||||
function obj = plotConnections(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Iterate over lower triangle off-diagonal region of the
|
||||
@@ -24,20 +21,20 @@ function [obj, f] = plotConnections(obj, ind, f)
|
||||
X = X'; Y = Y'; Z = Z';
|
||||
|
||||
% Plot the connections
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, "on");
|
||||
o = plot3(f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.CurrentAxes, "off");
|
||||
if isnan(obj.spatialPlotIndices)
|
||||
hold(obj.f.CurrentAxes, "on");
|
||||
o = plot3(obj.f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(obj.f.CurrentAxes, "off");
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), "on");
|
||||
o = plot3(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), "off");
|
||||
end
|
||||
|
||||
% Copy to other plots
|
||||
if size(ind, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
||||
if size(obj.spatialPlotIndices, 2) > 1
|
||||
for ii = 2:size(obj.spatialPlotIndices, 2)
|
||||
o = [o, copyobj(o(:, 1), obj.f.Children(1).Children(obj.spatialPlotIndices(ii)))];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -1,29 +1,26 @@
|
||||
function [obj, f] = plotGraph(obj, ind, f)
|
||||
function obj = plotGraph(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Form graph from adjacency matrix
|
||||
G = graph(obj.adjacency, 'omitselfloops');
|
||||
|
||||
% Plot graph object
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, 'on');
|
||||
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(f.CurrentAxes, 'off');
|
||||
if isnan(obj.networkGraphIndex)
|
||||
hold(obj.f.CurrentAxes, 'on');
|
||||
o = plot(obj.f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(obj.f.CurrentAxes, 'off');
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
o = plot(f.Children(1).Children(ind(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(f.Children(1).Children(ind(1)), 'off');
|
||||
if size(ind, 2) > 1
|
||||
hold(obj.f.Children(1).Children(obj.networkGraphIndex(1)), 'on');
|
||||
o = plot(obj.f.Children(1).Children(obj.networkGraphIndex(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(obj.f.Children(1).Children(obj.networkGraphIndex(1)), 'off');
|
||||
if size(obj.networkGraphIndex, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o; copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
||||
o = [o; copyobj(o(1), obj.f.Children(1).Children(obj.networkGraphIndex(ii)))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -1,25 +1,22 @@
|
||||
function [obj, f] = plotPartitions(obj, ind, f)
|
||||
function obj = plotPartitions(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, 'on');
|
||||
o = imagesc(f.CurrentAxes, obj.partitioning);
|
||||
hold(f.CurrentAxes, 'off');
|
||||
if isnan(obj.partitionGraphIndex)
|
||||
hold(obj.f.CurrentAxes, 'on');
|
||||
o = imagesc(obj.f.CurrentAxes, obj.partitioning);
|
||||
hold(obj.f.CurrentAxes, 'off');
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
o = imagesc(f.Children(1).Children(ind(1)), obj.partitioning);
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
if size(ind, 2) > 1
|
||||
hold(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), 'on');
|
||||
o = imagesc(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), obj.partitioning);
|
||||
hold(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), 'on');
|
||||
if size(obj.partitionGraphIndex, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
||||
o = [o, copyobj(o(1), obj.f.Children(1).Children(obj.partitionGraphIndex(ii)))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
28
@miSim/plotPerformance.m
Normal file
28
@miSim/plotPerformance.m
Normal file
@@ -0,0 +1,28 @@
|
||||
function obj = plotPerformance(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
axes(obj.fPerf);
|
||||
title(obj.fPerf.Children(1), "Sensor Performance");
|
||||
xlabel(obj.fPerf.Children(1), 'Time (s)');
|
||||
ylabel(obj.fPerf.Children(1), 'Sensor Performance');
|
||||
grid(obj.fPerf.Children(1), 'on');
|
||||
|
||||
% Plot current cumulative performance
|
||||
hold(obj.fPerf.Children(1), 'on');
|
||||
o = plot(obj.fPerf.Children(1), obj.perf(end, :));
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
|
||||
% Plot current agent performance
|
||||
for ii = 1:(size(obj.perf, 1) - 1)
|
||||
hold(obj.fPerf.Children(1), 'on');
|
||||
o = [o; plot(obj.fPerf.Children(1), obj.perf(ii, :))];
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
end
|
||||
|
||||
obj.performancePlot = o;
|
||||
end
|
||||
25
@miSim/run.m
25
@miSim/run.m
@@ -1,32 +1,23 @@
|
||||
function [obj, f] = run(obj, f)
|
||||
function [obj] = run(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Set up times to iterate over
|
||||
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
||||
partitioningTimes = times(obj.partitioningFreq:obj.partitioningFreq:size(times, 1));
|
||||
|
||||
% Start video writer
|
||||
v = obj.setupVideoWriter();
|
||||
v.open();
|
||||
|
||||
for ii = 1:size(times, 1)
|
||||
for ii = 1:size(obj.times, 1)
|
||||
% Display current sim time
|
||||
t = times(ii);
|
||||
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
|
||||
obj.t = obj.times(ii);
|
||||
fprintf("Sim Time: %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
|
||||
|
||||
% Check if it's time for new partitions
|
||||
updatePartitions = false;
|
||||
if ismember(t, partitioningTimes)
|
||||
if ismember(obj.t, obj.partitioningTimes)
|
||||
updatePartitions = true;
|
||||
obj = obj.partition();
|
||||
end
|
||||
@@ -37,13 +28,13 @@ function [obj, f] = run(obj, f)
|
||||
end
|
||||
|
||||
% Update adjacency matrix
|
||||
obj = obj.updateAdjacency;
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
% Update plots
|
||||
[obj, f] = obj.updatePlots(f, updatePartitions);
|
||||
obj = obj.updatePlots(updatePartitions);
|
||||
|
||||
% Write frame in to video
|
||||
I = getframe(f);
|
||||
I = getframe(obj.f);
|
||||
v.writeVideo(I);
|
||||
end
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ function v = setupVideoWriter(obj)
|
||||
if ispc || ismac
|
||||
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'MPEG-4');
|
||||
elseif isunix
|
||||
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
|
||||
v = VideoWriter(fullfile('.', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
|
||||
end
|
||||
|
||||
v.FrameRate = 1 / obj.timestep;
|
||||
|
||||
@@ -1,12 +1,10 @@
|
||||
function [obj, f] = updatePlots(obj, f, updatePartitions)
|
||||
function [obj] = updatePlots(obj, updatePartitions)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
updatePartitions (1, 1) logical = false;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Update agent positions, collision geometries
|
||||
@@ -20,24 +18,35 @@ function [obj, f] = updatePlots(obj, f, updatePartitions)
|
||||
|
||||
% Update agent connections plot
|
||||
delete(obj.connectionsPlot);
|
||||
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
||||
obj = obj.plotConnections();
|
||||
|
||||
% Update network graph plot
|
||||
delete(obj.graphPlot);
|
||||
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
||||
obj = obj.plotGraph();
|
||||
|
||||
% Update partitioning plot
|
||||
if updatePartitions
|
||||
delete(obj.partitionPlot);
|
||||
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
||||
obj = obj.plotPartitions();
|
||||
end
|
||||
|
||||
% reset plot limits to fit domain
|
||||
for ii = 1:size(obj.spatialPlotIndices, 2)
|
||||
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
end
|
||||
drawnow;
|
||||
|
||||
% Update performance plot
|
||||
if updatePartitions
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
% set(obj.performancePlot(1), 'YData', obj.perf(end, 1:find(nowIdx)));
|
||||
obj.performancePlot(1).YData(nowIdx) = obj.perf(end, nowIdx);
|
||||
for ii = 2:size(obj.performancePlot, 1)
|
||||
obj.performancePlot(ii).YData(nowIdx) = obj.perf(ii, nowIdx);
|
||||
end
|
||||
drawnow;
|
||||
end
|
||||
|
||||
drawnow;
|
||||
end
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="test"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="test_sigmoidSensor.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="plotParameters.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="tiltMembership.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="distanceMembership.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="plotPerformance.m" type="File"/>
|
||||
10
sensingModels/@sigmoidSensor/distanceMembership.m
Normal file
10
sensingModels/@sigmoidSensor/distanceMembership.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function x = distanceMembership(obj, d)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
d (:, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
x (:, 1) double;
|
||||
end
|
||||
x = 1 - (1 ./ (1 + exp(-obj.betaDist .* (abs(d) - obj.alphaDist))));
|
||||
end
|
||||
42
sensingModels/@sigmoidSensor/plotParameters.m
Normal file
42
sensingModels/@sigmoidSensor/plotParameters.m
Normal file
@@ -0,0 +1,42 @@
|
||||
function f = plotParameters(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
end
|
||||
arguments (Output)
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Distance and tilt sample points
|
||||
d = 0:(obj.alphaDist / 100):(2*obj.alphaDist);
|
||||
t = -90:1:90;
|
||||
|
||||
% Sample membership functions
|
||||
d_x = obj.distanceMembership(d);
|
||||
t_x = obj.tiltMembership(deg2rad(t));
|
||||
|
||||
% Plot resultant sigmoid curves
|
||||
f = figure;
|
||||
tiledlayout(f, 2, 1, "TileSpacing", "tight", "Padding", "compact");
|
||||
|
||||
% Distance
|
||||
nexttile(1, [1, 1]);
|
||||
grid("on");
|
||||
title("Distance Membership Sigmoid");
|
||||
xlabel("Distance (m)");
|
||||
ylabel("Membership");
|
||||
hold('on');
|
||||
plot(d, d_x, 'LineWidth', 2);
|
||||
hold('off');
|
||||
ylim([0, 1]);
|
||||
|
||||
% Tilt
|
||||
nexttile(2, [1, 1]);
|
||||
grid("on");
|
||||
title("Tilt Membership Sigmoid");
|
||||
xlabel("Tilt (deg)");
|
||||
ylabel("Membership");
|
||||
hold('on');
|
||||
plot(t, t_x, 'LineWidth', 2);
|
||||
hold('off');
|
||||
ylim([0, 1]);
|
||||
end
|
||||
@@ -15,9 +15,8 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
|
||||
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), x) - agentTilt;
|
||||
|
||||
% Membership functions
|
||||
mu_d = 1 - (1 ./ (1 + exp(-obj.betaDist .* (d - obj.alphaDist)))); % distance
|
||||
mu_p = 1; % pan
|
||||
mu_t = (1 ./ (1 + exp(-obj.betaTilt .* (tiltAngle + obj.alphaTilt)))) - (1 ./ (1 + exp(-obj.betaTilt .* (tiltAngle - obj.alphaTilt)))); % tilt
|
||||
mu_d = obj.distanceMembership(d);
|
||||
mu_t = obj.tiltMembership(tiltAngle);
|
||||
|
||||
value = mu_d .* mu_p .* mu_t;
|
||||
value = mu_d .* mu_t; % assume pan membership is always 1
|
||||
end
|
||||
@@ -13,5 +13,10 @@ classdef sigmoidSensor
|
||||
[obj] = initialize(obj, alphaDist, betaDist, alphaPan, betaPan, alphaTilt, betaTilt);
|
||||
[values, positions] = sense(obj, agent, sensingObjective, domain, partitioning);
|
||||
[value] = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos);
|
||||
[f] = plotParameters(obj);
|
||||
end
|
||||
methods (Access = private)
|
||||
x = distanceMembership(obj, d);
|
||||
x = tiltMembership(obj, t);
|
||||
end
|
||||
end
|
||||
10
sensingModels/@sigmoidSensor/tiltMembership.m
Normal file
10
sensingModels/@sigmoidSensor/tiltMembership.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function x = tiltMembership(obj, t)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
t (:, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
x (:, 1) double;
|
||||
end
|
||||
x = (1 ./ (1 + exp(-obj.betaTilt .* (t + obj.alphaTilt)))) - (1 ./ (1 + exp(-obj.betaTilt .* (t - obj.alphaTilt))));
|
||||
end
|
||||
@@ -1,5 +1,6 @@
|
||||
classdef test_miSim < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
% System under test
|
||||
testClass = miSim;
|
||||
|
||||
% Sim
|
||||
@@ -34,6 +35,16 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
maxCollisionRange = 0.5; % Maximum randomly generated collision geometry size
|
||||
collisionRanges = NaN;
|
||||
|
||||
% Sensing
|
||||
betaDistMin = 3;
|
||||
betaDistMax = 15;
|
||||
betaTiltMin = 3;
|
||||
betaTiltMax = 15;
|
||||
alphaDistMin = 2.5;
|
||||
alphaDistMax = 3;
|
||||
alphaTiltMin = deg2rad(15);
|
||||
alphaTiltMax = deg2rad(30);
|
||||
|
||||
% Communications
|
||||
comRange = 5; % Maximum range between agents that forms a communications link
|
||||
end
|
||||
@@ -139,7 +150,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
@@ -190,7 +201,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
end
|
||||
function misim_run(tc)
|
||||
% randomly create obstacles
|
||||
@@ -269,7 +280,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
@@ -320,10 +331,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
|
||||
% Run simulation loop
|
||||
[tc.testClass, f] = tc.testClass.run(f);
|
||||
tc.testClass = tc.testClass.run();
|
||||
end
|
||||
function test_basic_partitioning(tc)
|
||||
% place agents a fixed distance +/- X from the domain's center
|
||||
@@ -343,7 +354,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
% Homogeneous sensor model parameters
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
f = sensor.plotParameters();
|
||||
% Heterogeneous sensor model parameters
|
||||
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent; agent};
|
||||
@@ -351,13 +366,13 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
|
||||
% Optional third agent along the +Y axis
|
||||
% geometry3 = rectangularPrism;
|
||||
% geometry3 = geometry3.initialize([tc.domain.center - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
% tc.agents{3} = agent;
|
||||
% tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
geometry3 = rectangularPrism;
|
||||
geometry3 = geometry3.initialize([tc.domain.center - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
tc.agents{3} = agent;
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
53
test/test_sigmoidSensor.m
Normal file
53
test/test_sigmoidSensor.m
Normal file
@@ -0,0 +1,53 @@
|
||||
classdef test_sigmoidSensor < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
% System under test
|
||||
testClass = sigmoidSensor;
|
||||
|
||||
% Domain
|
||||
domain = rectangularPrism;
|
||||
|
||||
% Sensor parameter ranges
|
||||
betaDistMin = 3;
|
||||
betaDistMax = 15;
|
||||
betaTiltMin = 3;
|
||||
betaTiltMax = 15;
|
||||
alphaDistMin = 2.5;
|
||||
alphaDistMax = 3;
|
||||
alphaTiltMin = deg2rad(15);
|
||||
alphaTiltMax = deg2rad(30);
|
||||
end
|
||||
|
||||
methods (TestMethodSetup)
|
||||
function tc = setup(tc)
|
||||
% Reinitialize sensor with random parameters
|
||||
tc.testClass = sigmoidSensor;
|
||||
tc.testClass = tc.testClass.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
end
|
||||
end
|
||||
|
||||
methods (Test)
|
||||
% Test methods
|
||||
function test_sensorPerformance(tc)
|
||||
tc.testClass = sigmoidSensor;
|
||||
alphaDist = 2.5;
|
||||
betaDist = 3;
|
||||
alphaTilt = deg2rad(15);
|
||||
betaTilt = 3;
|
||||
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
||||
|
||||
% Plot
|
||||
tc.testClass.plotParameters();
|
||||
|
||||
% Performance at current position should be maximized (1)
|
||||
% some wiggle room is needed for certain parameter conditions,
|
||||
% e.g. small alphaDist and betaDist produce mu_d slightly < 1
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance(zeros(1, 3), NaN, 0, zeros(1, 3)), 1, 'AbsTol', 1e-3);
|
||||
% It looks like mu_t can max out at really low values like 0.37
|
||||
% when alphaTilt and betaTilt are small, which seems wrong
|
||||
|
||||
% Performance at distance alphaDist should be 1/2
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2, 'AbsTol', 1e-3);
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user