Compare commits
20 Commits
a19209f736
...
more-clean
| Author | SHA1 | Date | |
|---|---|---|---|
| 48763eb78c | |||
| 297ddbf160 | |||
| 5898ecce07 | |||
| f7b28cdf4f | |||
| 66bbfe52ca | |||
| b62f0f6410 | |||
| fe5f3bb2be | |||
| 35b15db5d3 | |||
| f50e3e2832 | |||
| e53b721f34 | |||
| db20f11ea8 | |||
| 86342c4572 | |||
| b9a2a83ac6 | |||
| 9dbd29849f | |||
| 12dbde7a02 | |||
| c9ac9d7725 | |||
| afa5d79c1d | |||
| e0f365b21b | |||
| 4363914215 | |||
| 855b28b066 |
7
.gitignore
vendored
7
.gitignore
vendored
@@ -41,3 +41,10 @@ codegen/
|
||||
|
||||
# Sandbox contents
|
||||
sandbox/*
|
||||
|
||||
# Videos
|
||||
*.mp4
|
||||
*.avi
|
||||
|
||||
# Figures
|
||||
*.fig
|
||||
|
||||
@@ -29,5 +29,5 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
|
||||
|
||||
% Initialize FOV cone
|
||||
obj.fovGeometry = cone;
|
||||
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tan(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
|
||||
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tand(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
|
||||
end
|
||||
@@ -1,4 +1,4 @@
|
||||
function [obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
||||
function obj = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
@@ -11,12 +11,11 @@ function [obj, f] = initialize(obj, domain, objective, agents, timestep, partito
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Define simulation time parameters
|
||||
obj.timestep = timestep;
|
||||
obj.maxIter = maxIter;
|
||||
obj.maxIter = maxIter - 1;
|
||||
|
||||
% Define domain
|
||||
obj.domain = domain;
|
||||
@@ -34,9 +33,17 @@ function [obj, f] = initialize(obj, domain, objective, agents, timestep, partito
|
||||
% Compute adjacency matrix
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
% Set up times to iterate over
|
||||
obj.times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
||||
obj.partitioningTimes = obj.times(obj.partitioningFreq:obj.partitioningFreq:size(obj.times, 1));
|
||||
|
||||
% Prepare performance data store (at t = 0, all have 0 performance)
|
||||
obj.fPerf = figure;
|
||||
obj.perf = [zeros(size(obj.agents, 1) + 1, 1), NaN(size(obj.agents, 1) + 1, size(obj.partitioningTimes, 1) - 1)];
|
||||
|
||||
% Create initial partitioning
|
||||
obj = obj.partition();
|
||||
|
||||
% Set up plots showing initialized state
|
||||
[obj, f] = obj.plot();
|
||||
obj = obj.plot();
|
||||
end
|
||||
@@ -13,14 +13,27 @@ classdef miSim
|
||||
adjacency = NaN; % Adjacency matrix representing communications network graph
|
||||
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
||||
partitioning = NaN;
|
||||
performance = NaN; % current cumulative sensor performance
|
||||
oldMeanTotalPerf = 0;
|
||||
|
||||
fPerf; % performance plot figure
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
% Sim
|
||||
t = NaN; % current sim time
|
||||
perf; % sensor performance timeseries array
|
||||
times;
|
||||
partitioningTimes;
|
||||
|
||||
% Plot objects
|
||||
f = firstPlotSetup(); % main plotting tiled layout figure
|
||||
connectionsPlot; % objects for lines connecting agents in spatial plots
|
||||
graphPlot; % objects for abstract network graph plot
|
||||
partitionPlot; % objects for partition plot
|
||||
|
||||
performancePlot; % objects for sensor performance plot
|
||||
|
||||
% Indicies for various plot types in the main tiled layout figure
|
||||
spatialPlotIndices = [6, 4, 3, 2];
|
||||
objectivePlotIndices = [6, 4];
|
||||
@@ -29,15 +42,15 @@ classdef miSim
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
|
||||
[obj, f] = run(obj, f);
|
||||
[obj] = partition(obj);
|
||||
[obj] = updateAdjacency(obj);
|
||||
[obj, f] = plot(obj);
|
||||
[obj, f] = plotConnections(obj, ind, f);
|
||||
[obj, f] = plotPartitions(obj, ind, f);
|
||||
[obj, f] = plotGraph(obj, ind, f);
|
||||
[obj, f] = updatePlots(obj, f, updatePartitions);
|
||||
[obj] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
|
||||
[obj] = run(obj);
|
||||
[obj] = partition(obj);
|
||||
[obj] = updateAdjacency(obj);
|
||||
[obj] = plot(obj);
|
||||
[obj] = plotConnections(obj);
|
||||
[obj] = plotPartitions(obj);
|
||||
[obj] = plotGraph(obj);
|
||||
[obj] = updatePlots(obj, updatePartitions);
|
||||
end
|
||||
methods (Access = private)
|
||||
[v] = setupVideoWriter(obj);
|
||||
|
||||
@@ -15,13 +15,27 @@ function obj = partition(obj)
|
||||
% Get highest performance value at each point
|
||||
[~, idx] = max(agentPerformances, [], 3);
|
||||
|
||||
% Collect agent indices in the same way
|
||||
% Collect agent indices in the same way as performance
|
||||
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
||||
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
|
||||
agentInds = cat(3, agentInds{:});
|
||||
|
||||
% Get highest performing agent's index
|
||||
[m,n,~] = size(agentInds);
|
||||
[i,j] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), i, j, idx));
|
||||
% Use highest performing agent's index to form partitions
|
||||
[m, n, ~] = size(agentInds);
|
||||
[jj, kk] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
|
||||
|
||||
% Get individual agent sensor performance
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
if isnan(obj.t)
|
||||
nowIdx = 1;
|
||||
end
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
idx = obj.partitioning == ii;
|
||||
agentPerformance = squeeze(agentPerformances(:, :, ii));
|
||||
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
|
||||
end
|
||||
|
||||
% Current total performance
|
||||
obj.perf(end, nowIdx) = sum(obj.perf(1:(end - 1), nowIdx));
|
||||
end
|
||||
@@ -1,41 +1,43 @@
|
||||
function [obj, f] = plot(obj)
|
||||
function obj = plot(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Plot domain
|
||||
[obj.domain, f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
||||
[obj.domain, obj.f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
||||
|
||||
% Plot obstacles
|
||||
for ii = 1:size(obj.obstacles, 1)
|
||||
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, f);
|
||||
[obj.obstacles{ii}, obj.f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, obj.f);
|
||||
end
|
||||
|
||||
% Plot objective gradient
|
||||
f = obj.domain.objective.plot(obj.objectivePlotIndices, f);
|
||||
obj.f = obj.domain.objective.plot(obj.objectivePlotIndices, obj.f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
[obj.agents{ii}, f] = obj.agents{ii}.plot(obj.spatialPlotIndices, f);
|
||||
[obj.agents{ii}, obj.f] = obj.agents{ii}.plot(obj.spatialPlotIndices, obj.f);
|
||||
end
|
||||
|
||||
% Plot communication links
|
||||
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
||||
obj = obj.plotConnections();
|
||||
|
||||
% Plot abstract network graph
|
||||
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
||||
obj = obj.plotGraph();
|
||||
|
||||
% Plot domain partitioning
|
||||
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
||||
obj = obj.plotPartitions();
|
||||
|
||||
% Enforce plot limits
|
||||
for ii = 1:size(obj.spatialPlotIndices, 2)
|
||||
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
end
|
||||
|
||||
% Plot performance
|
||||
obj = obj.plotPerformance();
|
||||
end
|
||||
@@ -1,12 +1,9 @@
|
||||
function [obj, f] = plotConnections(obj, ind, f)
|
||||
function obj = plotConnections(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Iterate over lower triangle off-diagonal region of the
|
||||
@@ -24,20 +21,20 @@ function [obj, f] = plotConnections(obj, ind, f)
|
||||
X = X'; Y = Y'; Z = Z';
|
||||
|
||||
% Plot the connections
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, "on");
|
||||
o = plot3(f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.CurrentAxes, "off");
|
||||
if isnan(obj.spatialPlotIndices)
|
||||
hold(obj.f.CurrentAxes, "on");
|
||||
o = plot3(obj.f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(obj.f.CurrentAxes, "off");
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), "on");
|
||||
o = plot3(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), "off");
|
||||
end
|
||||
|
||||
% Copy to other plots
|
||||
if size(ind, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
||||
if size(obj.spatialPlotIndices, 2) > 1
|
||||
for ii = 2:size(obj.spatialPlotIndices, 2)
|
||||
o = [o, copyobj(o(:, 1), obj.f.Children(1).Children(obj.spatialPlotIndices(ii)))];
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -1,29 +1,26 @@
|
||||
function [obj, f] = plotGraph(obj, ind, f)
|
||||
function obj = plotGraph(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Form graph from adjacency matrix
|
||||
G = graph(obj.adjacency, 'omitselfloops');
|
||||
|
||||
% Plot graph object
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, 'on');
|
||||
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(f.CurrentAxes, 'off');
|
||||
if isnan(obj.networkGraphIndex)
|
||||
hold(obj.f.CurrentAxes, 'on');
|
||||
o = plot(obj.f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(obj.f.CurrentAxes, 'off');
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
o = plot(f.Children(1).Children(ind(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(f.Children(1).Children(ind(1)), 'off');
|
||||
if size(ind, 2) > 1
|
||||
hold(obj.f.Children(1).Children(obj.networkGraphIndex(1)), 'on');
|
||||
o = plot(obj.f.Children(1).Children(obj.networkGraphIndex(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(obj.f.Children(1).Children(obj.networkGraphIndex(1)), 'off');
|
||||
if size(obj.networkGraphIndex, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o; copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
||||
o = [o; copyobj(o(1), obj.f.Children(1).Children(obj.networkGraphIndex(ii)))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -1,25 +1,22 @@
|
||||
function [obj, f] = plotPartitions(obj, ind, f)
|
||||
function obj = plotPartitions(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, 'on');
|
||||
o = imagesc(f.CurrentAxes, obj.partitioning);
|
||||
hold(f.CurrentAxes, 'off');
|
||||
if isnan(obj.partitionGraphIndex)
|
||||
hold(obj.f.CurrentAxes, 'on');
|
||||
o = imagesc(obj.f.CurrentAxes, obj.partitioning);
|
||||
hold(obj.f.CurrentAxes, 'off');
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
o = imagesc(f.Children(1).Children(ind(1)), obj.partitioning);
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
if size(ind, 2) > 1
|
||||
hold(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), 'on');
|
||||
o = imagesc(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), obj.partitioning);
|
||||
hold(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), 'on');
|
||||
if size(obj.partitionGraphIndex, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
||||
o = [o, copyobj(o(1), obj.f.Children(1).Children(obj.partitionGraphIndex(ii)))];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
36
@miSim/plotPerformance.m
Normal file
36
@miSim/plotPerformance.m
Normal file
@@ -0,0 +1,36 @@
|
||||
function obj = plotPerformance(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
axes(obj.fPerf);
|
||||
title(obj.fPerf.Children(1), "Sensor Performance");
|
||||
xlabel(obj.fPerf.Children(1), 'Time (s)');
|
||||
ylabel(obj.fPerf.Children(1), 'Sensor Performance');
|
||||
grid(obj.fPerf.Children(1), 'on');
|
||||
|
||||
% Plot current cumulative performance
|
||||
hold(obj.fPerf.Children(1), 'on');
|
||||
o = plot(obj.fPerf.Children(1), obj.perf(end, :));
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
|
||||
% Plot current agent performance
|
||||
for ii = 1:(size(obj.perf, 1) - 1)
|
||||
hold(obj.fPerf.Children(1), 'on');
|
||||
o = [o; plot(obj.fPerf.Children(1), obj.perf(ii, :))];
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
end
|
||||
|
||||
% Add legend
|
||||
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
|
||||
for ii = 1:size(agentStrings, 1)
|
||||
agentStrings(ii) = sprintf(agentStrings(ii), ii);
|
||||
end
|
||||
agentStrings = ["Total"; agentStrings];
|
||||
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
|
||||
|
||||
obj.performancePlot = o;
|
||||
end
|
||||
39
@miSim/run.m
39
@miSim/run.m
@@ -1,32 +1,37 @@
|
||||
function [obj, f] = run(obj, f)
|
||||
function [obj] = run(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Set up times to iterate over
|
||||
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
||||
partitioningTimes = times(obj.partitioningFreq:obj.partitioningFreq:size(times, 1));
|
||||
|
||||
% Start video writer
|
||||
v = obj.setupVideoWriter();
|
||||
v.open();
|
||||
|
||||
for ii = 1:size(times, 1)
|
||||
steady = 0;
|
||||
for ii = 1:size(obj.times, 1)
|
||||
% Display current sim time
|
||||
t = times(ii);
|
||||
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
|
||||
obj.t = obj.times(ii);
|
||||
fprintf("Sim Time: %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
|
||||
|
||||
% Check if it's time for new partitions
|
||||
updatePartitions = false;
|
||||
if ismember(t, partitioningTimes)
|
||||
if ismember(obj.t, obj.partitioningTimes)
|
||||
% Check if it's time to end the sim (performance has settled)
|
||||
if obj.t >= obj.partitioningTimes(5)
|
||||
idx = find(obj.t == obj.partitioningTimes);
|
||||
newMeanTotalPerf = mean(obj.perf(end, ((idx - 5 + 1):idx)));
|
||||
if (obj.oldMeanTotalPerf * 0.95 <= newMeanTotalPerf) && (newMeanTotalPerf <= max(1e-6, obj.oldMeanTotalPerf * 1.05))
|
||||
steady = steady + 1;
|
||||
if steady >= 3
|
||||
fprintf("Performance is stable, terminating early at %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
|
||||
break; % performance is not improving further, exit main sim loop
|
||||
end
|
||||
end
|
||||
obj.oldMeanTotalPerf = newMeanTotalPerf;
|
||||
end
|
||||
updatePartitions = true;
|
||||
obj = obj.partition();
|
||||
end
|
||||
@@ -37,13 +42,13 @@ function [obj, f] = run(obj, f)
|
||||
end
|
||||
|
||||
% Update adjacency matrix
|
||||
obj = obj.updateAdjacency;
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
% Update plots
|
||||
[obj, f] = obj.updatePlots(f, updatePartitions);
|
||||
obj = obj.updatePlots(updatePartitions);
|
||||
|
||||
% Write frame in to video
|
||||
I = getframe(f);
|
||||
I = getframe(obj.f);
|
||||
v.writeVideo(I);
|
||||
end
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ function v = setupVideoWriter(obj)
|
||||
if ispc || ismac
|
||||
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'MPEG-4');
|
||||
elseif isunix
|
||||
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
|
||||
v = VideoWriter(fullfile('.', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
|
||||
end
|
||||
|
||||
v.FrameRate = 1 / obj.timestep;
|
||||
|
||||
@@ -1,12 +1,10 @@
|
||||
function [obj, f] = updatePlots(obj, f, updatePartitions)
|
||||
function [obj] = updatePlots(obj, updatePartitions)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
updatePartitions (1, 1) logical = false;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Update agent positions, collision geometries
|
||||
@@ -20,24 +18,37 @@ function [obj, f] = updatePlots(obj, f, updatePartitions)
|
||||
|
||||
% Update agent connections plot
|
||||
delete(obj.connectionsPlot);
|
||||
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
||||
obj = obj.plotConnections();
|
||||
|
||||
% Update network graph plot
|
||||
delete(obj.graphPlot);
|
||||
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
||||
obj = obj.plotGraph();
|
||||
|
||||
% Update partitioning plot
|
||||
if updatePartitions
|
||||
delete(obj.partitionPlot);
|
||||
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
||||
obj = obj.plotPartitions();
|
||||
end
|
||||
|
||||
% reset plot limits to fit domain
|
||||
for ii = 1:size(obj.spatialPlotIndices, 2)
|
||||
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
end
|
||||
|
||||
drawnow;
|
||||
|
||||
% Update performance plot
|
||||
if updatePartitions
|
||||
% find index corresponding to the current time
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
nowIdx = find(nowIdx);
|
||||
|
||||
% Re-normalize performance plot
|
||||
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
|
||||
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
|
||||
for ii = 2:size(obj.performancePlot, 1)
|
||||
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -29,8 +29,11 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
|
||||
obj.objectiveFunction = objectiveFunction;
|
||||
obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X));
|
||||
|
||||
% Normalize
|
||||
obj.values = obj.values ./ max(obj.values, [], "all");
|
||||
|
||||
% store ground position
|
||||
idx = obj.values == max(obj.values, [], "all");
|
||||
idx = obj.values == 1;
|
||||
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
||||
|
||||
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")
|
||||
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="sensingModels" Type="Relative"/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="420d04e4-3880-4a45-8609-11cb30d87302" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="sensorModels" Type="Relative"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="d143c27d-6824-4569-9093-8150b60976cb" type="Reference"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="test"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="test_sigmoidSensor.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="plotPerformance.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sensorModels" type="File"/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sensingModels" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="tiltMembership.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="plotParameters.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="distanceMembership.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
10
sensorModels/@sigmoidSensor/distanceMembership.m
Normal file
10
sensorModels/@sigmoidSensor/distanceMembership.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function x = distanceMembership(obj, d)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
d (:, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
x (:, 1) double;
|
||||
end
|
||||
x = 1 - (1 ./ (1 + exp(-obj.betaDist .* (abs(d) - obj.alphaDist))));
|
||||
end
|
||||
42
sensorModels/@sigmoidSensor/plotParameters.m
Normal file
42
sensorModels/@sigmoidSensor/plotParameters.m
Normal file
@@ -0,0 +1,42 @@
|
||||
function f = plotParameters(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
end
|
||||
arguments (Output)
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Distance and tilt sample points
|
||||
d = 0:(obj.alphaDist / 100):(2*obj.alphaDist);
|
||||
t = -90:1:90;
|
||||
|
||||
% Sample membership functions
|
||||
d_x = obj.distanceMembership(d);
|
||||
t_x = obj.tiltMembership(t);
|
||||
|
||||
% Plot resultant sigmoid curves
|
||||
f = figure;
|
||||
tiledlayout(f, 2, 1, "TileSpacing", "tight", "Padding", "compact");
|
||||
|
||||
% Distance
|
||||
nexttile(1, [1, 1]);
|
||||
grid("on");
|
||||
title("Distance Membership Sigmoid");
|
||||
xlabel("Distance (m)");
|
||||
ylabel("Membership");
|
||||
hold('on');
|
||||
plot(d, d_x, 'LineWidth', 2);
|
||||
hold('off');
|
||||
ylim([0, 1]);
|
||||
|
||||
% Tilt
|
||||
nexttile(2, [1, 1]);
|
||||
grid("on");
|
||||
title("Tilt Membership Sigmoid");
|
||||
xlabel("Tilt (deg)");
|
||||
ylabel("Membership");
|
||||
hold('on');
|
||||
plot(t, t_x, 'LineWidth', 2);
|
||||
hold('off');
|
||||
ylim([0, 1]);
|
||||
end
|
||||
@@ -10,14 +10,16 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
|
||||
value (:, 1) double;
|
||||
end
|
||||
|
||||
% compute direct distance and distance projected onto the ground
|
||||
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
|
||||
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
|
||||
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), x) - agentTilt;
|
||||
|
||||
% compute tilt angle
|
||||
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
|
||||
|
||||
% Membership functions
|
||||
mu_d = 1 - (1 ./ (1 + exp(-obj.betaDist .* (d - obj.alphaDist)))); % distance
|
||||
mu_p = 1; % pan
|
||||
mu_t = (1 ./ (1 + exp(-obj.betaTilt .* (tiltAngle + obj.alphaTilt)))) - (1 ./ (1 + exp(-obj.betaTilt .* (tiltAngle - obj.alphaTilt)))); % tilt
|
||||
mu_d = obj.distanceMembership(d);
|
||||
mu_t = obj.tiltMembership(tiltAngle);
|
||||
|
||||
value = mu_d .* mu_p .* mu_t;
|
||||
value = mu_d .* mu_t; % assume pan membership is always 1
|
||||
end
|
||||
@@ -5,7 +5,7 @@ classdef sigmoidSensor
|
||||
betaDist = NaN;
|
||||
alphaPan = NaN;
|
||||
betaPan = NaN;
|
||||
alphaTilt = NaN;
|
||||
alphaTilt = NaN; % degrees
|
||||
betaTilt = NaN;
|
||||
end
|
||||
|
||||
@@ -13,5 +13,10 @@ classdef sigmoidSensor
|
||||
[obj] = initialize(obj, alphaDist, betaDist, alphaPan, betaPan, alphaTilt, betaTilt);
|
||||
[values, positions] = sense(obj, agent, sensingObjective, domain, partitioning);
|
||||
[value] = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos);
|
||||
[f] = plotParameters(obj);
|
||||
end
|
||||
methods (Access = private)
|
||||
x = distanceMembership(obj, d);
|
||||
x = tiltMembership(obj, t);
|
||||
end
|
||||
end
|
||||
10
sensorModels/@sigmoidSensor/tiltMembership.m
Normal file
10
sensorModels/@sigmoidSensor/tiltMembership.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function x = tiltMembership(obj, t)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
t (:, 1) double; % degrees
|
||||
end
|
||||
arguments (Output)
|
||||
x (:, 1) double;
|
||||
end
|
||||
x = (1 ./ (1 + exp(-obj.betaTilt .* (t + obj.alphaTilt)))) - (1 ./ (1 + exp(-obj.betaTilt .* (t - obj.alphaTilt))));
|
||||
end
|
||||
@@ -1,5 +1,6 @@
|
||||
classdef test_miSim < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
% System under test
|
||||
testClass = miSim;
|
||||
|
||||
% Sim
|
||||
@@ -24,8 +25,8 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
objective = sensingObjective;
|
||||
|
||||
% Agents
|
||||
minAgents = 3; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 6; % Maximum number of agents to be randomly generated
|
||||
minAgents = 2; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 4; % Maximum number of agents to be randomly generated
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
agents = cell(0, 1);
|
||||
|
||||
@@ -34,8 +35,18 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
maxCollisionRange = 0.5; % Maximum randomly generated collision geometry size
|
||||
collisionRanges = NaN;
|
||||
|
||||
% Sensing
|
||||
betaDistMin = 3;
|
||||
betaDistMax = 15;
|
||||
betaTiltMin = 3;
|
||||
betaTiltMax = 15;
|
||||
alphaDistMin = 2.5;
|
||||
alphaDistMax = 3;
|
||||
alphaTiltMin = 15; % degrees
|
||||
alphaTiltMax = 30; % degrees
|
||||
|
||||
% Communications
|
||||
comRange = 5; % Maximum range between agents that forms a communications link
|
||||
comRange = 8; % Maximum range between agents that forms a communications link
|
||||
end
|
||||
|
||||
% Setup for each test
|
||||
@@ -93,9 +104,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
@@ -139,7 +152,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
@@ -190,7 +203,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
end
|
||||
function misim_run(tc)
|
||||
% randomly create obstacles
|
||||
@@ -223,9 +236,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
@@ -269,7 +284,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
@@ -320,10 +335,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
|
||||
% Run simulation loop
|
||||
[tc.testClass, f] = tc.testClass.run(f);
|
||||
tc.testClass = tc.testClass.run();
|
||||
end
|
||||
function test_basic_partitioning(tc)
|
||||
% place agents a fixed distance +/- X from the domain's center
|
||||
@@ -336,28 +351,66 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
dh = [0,0,-1]; % bias agent altitude from domain center
|
||||
geometry1 = rectangularPrism;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize([tc.domain.center + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry2 = geometry2.initialize([tc.domain.center - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
|
||||
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
% Homogeneous sensor model parameters
|
||||
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
|
||||
% Heterogeneous sensor model parameters
|
||||
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Plot sensor parameters (optional)
|
||||
% f = sensor.plotParameters();
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent; agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
|
||||
% Optional third agent along the +Y axis
|
||||
% geometry3 = rectangularPrism;
|
||||
% geometry3 = geometry3.initialize([tc.domain.center - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
% tc.agents{3} = agent;
|
||||
% tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
geometry3 = rectangularPrism;
|
||||
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
tc.agents{3} = agent;
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
close(tc.testClass.fPerf);
|
||||
end
|
||||
function test_single_partition(tc)
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
geometry1 = rectangularPrism;
|
||||
geometry1 = geometry1.initialize([[tc.domain.center(1:2), 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2), 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
% Homogeneous sensor model parameters
|
||||
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
||||
|
||||
% Plot sensor parameters (optional)
|
||||
f = sensor.plotParameters();
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3, 1, sprintf("Agent %d", 1));
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
close(tc.testClass.fPerf);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
62
test/test_sigmoidSensor.m
Normal file
62
test/test_sigmoidSensor.m
Normal file
@@ -0,0 +1,62 @@
|
||||
classdef test_sigmoidSensor < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
% System under test
|
||||
testClass = sigmoidSensor;
|
||||
|
||||
% Domain
|
||||
domain = rectangularPrism;
|
||||
|
||||
% Sensor parameter ranges
|
||||
betaDistMin = 3;
|
||||
betaDistMax = 15;
|
||||
betaTiltMin = 3;
|
||||
betaTiltMax = 15;
|
||||
alphaDistMin = 2.5;
|
||||
alphaDistMax = 3;
|
||||
alphaTiltMin = 15; % degrees
|
||||
alphaTiltMax = 30; % degrees
|
||||
end
|
||||
|
||||
methods (TestMethodSetup)
|
||||
function tc = setup(tc)
|
||||
% Reinitialize sensor with random parameters
|
||||
tc.testClass = sigmoidSensor;
|
||||
tc.testClass = tc.testClass.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
end
|
||||
end
|
||||
|
||||
methods (Test)
|
||||
% Test methods
|
||||
function test_sensorPerformance(tc)
|
||||
tc.testClass = sigmoidSensor;
|
||||
alphaDist = 2.5;
|
||||
betaDist = 3;
|
||||
alphaTilt = 15; % degrees
|
||||
betaTilt = 3;
|
||||
h = 1e-6;
|
||||
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
||||
|
||||
% Plot (optional)
|
||||
% tc.testClass.plotParameters();
|
||||
|
||||
% Anticipate perfect performance for a point directly below and
|
||||
% extremely close
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [0, 0, 0]), 1, 'RelTol', 1e-3);
|
||||
% It looks like mu_t can max out at really low values like 0.37
|
||||
% when alphaTilt and betaTilt are small, which seems wrong
|
||||
|
||||
% Performance at nadir point, distance alphaDist should be 1/2 exactly
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2);
|
||||
|
||||
% Performance at (almost) 0 distance, alphaTilt should be 1/2
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [tand(alphaTilt)*h, 0, 0]), 1/2, 'RelTol', 1e-3);
|
||||
|
||||
% Performance at great distance should be 0
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, 10], NaN, 0, [0, 0, 0]), 0, 'AbsTol', 1e-9);
|
||||
|
||||
% Performance at great tilt should be 0
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [5, 5, 0]), 0, 'AbsTol', 1e-9);
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
Reference in New Issue
Block a user