Compare commits
4 Commits
gradient-a
...
297ddbf160
| Author | SHA1 | Date | |
|---|---|---|---|
| 297ddbf160 | |||
| 5898ecce07 | |||
| f7b28cdf4f | |||
| 66bbfe52ca |
@@ -14,8 +14,6 @@ classdef miSim
|
|||||||
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
||||||
partitioning = NaN;
|
partitioning = NaN;
|
||||||
performance = NaN; % current cumulative sensor performance
|
performance = NaN; % current cumulative sensor performance
|
||||||
|
|
||||||
fPerf; % performance plot figure
|
|
||||||
end
|
end
|
||||||
|
|
||||||
properties (Access = private)
|
properties (Access = private)
|
||||||
@@ -31,6 +29,7 @@ classdef miSim
|
|||||||
graphPlot; % objects for abstract network graph plot
|
graphPlot; % objects for abstract network graph plot
|
||||||
partitionPlot; % objects for partition plot
|
partitionPlot; % objects for partition plot
|
||||||
|
|
||||||
|
fPerf; % performance plot figure
|
||||||
performancePlot; % objects for sensor performance plot
|
performancePlot; % objects for sensor performance plot
|
||||||
|
|
||||||
% Indicies for various plot types in the main tiled layout figure
|
% Indicies for various plot types in the main tiled layout figure
|
||||||
@@ -54,4 +53,4 @@ classdef miSim
|
|||||||
methods (Access = private)
|
methods (Access = private)
|
||||||
[v] = setupVideoWriter(obj);
|
[v] = setupVideoWriter(obj);
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
@@ -10,7 +10,6 @@ function [obj] = run(obj)
|
|||||||
v = obj.setupVideoWriter();
|
v = obj.setupVideoWriter();
|
||||||
v.open();
|
v.open();
|
||||||
|
|
||||||
steady = 0;
|
|
||||||
for ii = 1:size(obj.times, 1)
|
for ii = 1:size(obj.times, 1)
|
||||||
% Display current sim time
|
% Display current sim time
|
||||||
obj.t = obj.times(ii);
|
obj.t = obj.times(ii);
|
||||||
@@ -41,4 +40,4 @@ function [obj] = run(obj)
|
|||||||
|
|
||||||
% Close video file
|
% Close video file
|
||||||
v.close();
|
v.close();
|
||||||
end
|
end
|
||||||
@@ -104,11 +104,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
if ii == 1
|
if ii == 1
|
||||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||||
candidatePos = tc.domain.random();
|
candidatePos = tc.domain.random();
|
||||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
candidatePos(3) = 2 + rand * 1.5; % place agents at decent altitudes for sensing
|
||||||
end
|
end
|
||||||
else
|
else
|
||||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
|
||||||
end
|
end
|
||||||
|
|
||||||
% Make sure that the candidate position is within the
|
% Make sure that the candidate position is within the
|
||||||
@@ -240,7 +239,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
end
|
end
|
||||||
else
|
else
|
||||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
|
||||||
end
|
end
|
||||||
|
|
||||||
% Make sure that the candidate position is within the
|
% Make sure that the candidate position is within the
|
||||||
@@ -361,12 +359,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
sensor = sigmoidSensor;
|
sensor = sigmoidSensor;
|
||||||
% Homogeneous sensor model parameters
|
% Homogeneous sensor model parameters
|
||||||
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
|
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
|
||||||
|
f = sensor.plotParameters();
|
||||||
% Heterogeneous sensor model parameters
|
% Heterogeneous sensor model parameters
|
||||||
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||||
|
|
||||||
% Plot sensor parameters (optional)
|
|
||||||
% f = sensor.plotParameters();
|
|
||||||
|
|
||||||
% Initialize agents
|
% Initialize agents
|
||||||
tc.agents = {agent; agent};
|
tc.agents = {agent; agent};
|
||||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||||
@@ -380,7 +376,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
|
|
||||||
% Initialize the simulation
|
% Initialize the simulation
|
||||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||||
close(tc.testClass.fPerf);
|
|
||||||
end
|
end
|
||||||
function test_single_partition(tc)
|
function test_single_partition(tc)
|
||||||
% make basic domain
|
% make basic domain
|
||||||
@@ -388,7 +383,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||||
|
|
||||||
% make basic sensing objective
|
% make basic sensing objective
|
||||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
|
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||||
|
|
||||||
% Initialize agent collision geometry
|
% Initialize agent collision geometry
|
||||||
geometry1 = rectangularPrism;
|
geometry1 = rectangularPrism;
|
||||||
@@ -400,8 +395,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
||||||
alphaDist = l/2; % half of domain length/width
|
alphaDist = l/2; % half of domain length/width
|
||||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
||||||
|
|
||||||
% Plot sensor parameters (optional)
|
|
||||||
f = sensor.plotParameters();
|
f = sensor.plotParameters();
|
||||||
|
|
||||||
% Initialize agents
|
% Initialize agents
|
||||||
@@ -410,7 +403,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
|
|
||||||
% Initialize the simulation
|
% Initialize the simulation
|
||||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||||
close(tc.testClass.fPerf);
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|||||||
@@ -36,8 +36,8 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
|
|||||||
h = 1e-6;
|
h = 1e-6;
|
||||||
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
||||||
|
|
||||||
% Plot (optional)
|
% Plot
|
||||||
% tc.testClass.plotParameters();
|
tc.testClass.plotParameters();
|
||||||
|
|
||||||
% Anticipate perfect performance for a point directly below and
|
% Anticipate perfect performance for a point directly below and
|
||||||
% extremely close
|
% extremely close
|
||||||
|
|||||||
Reference in New Issue
Block a user