Compare commits
2 Commits
gradient-a
...
f7b28cdf4f
| Author | SHA1 | Date | |
|---|---|---|---|
| f7b28cdf4f | |||
| 66bbfe52ca |
@@ -14,8 +14,6 @@ classdef miSim
|
|||||||
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
||||||
partitioning = NaN;
|
partitioning = NaN;
|
||||||
performance = NaN; % current cumulative sensor performance
|
performance = NaN; % current cumulative sensor performance
|
||||||
|
|
||||||
fPerf; % performance plot figure
|
|
||||||
end
|
end
|
||||||
|
|
||||||
properties (Access = private)
|
properties (Access = private)
|
||||||
@@ -31,6 +29,7 @@ classdef miSim
|
|||||||
graphPlot; % objects for abstract network graph plot
|
graphPlot; % objects for abstract network graph plot
|
||||||
partitionPlot; % objects for partition plot
|
partitionPlot; % objects for partition plot
|
||||||
|
|
||||||
|
fPerf; % performance plot figure
|
||||||
performancePlot; % objects for sensor performance plot
|
performancePlot; % objects for sensor performance plot
|
||||||
|
|
||||||
% Indicies for various plot types in the main tiled layout figure
|
% Indicies for various plot types in the main tiled layout figure
|
||||||
|
|||||||
@@ -24,13 +24,5 @@ function obj = plotPerformance(obj)
|
|||||||
hold(obj.fPerf.Children(1), 'off');
|
hold(obj.fPerf.Children(1), 'off');
|
||||||
end
|
end
|
||||||
|
|
||||||
% Add legend
|
|
||||||
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
|
|
||||||
for ii = 1:size(agentStrings, 1)
|
|
||||||
agentStrings(ii) = sprintf(agentStrings(ii), ii);
|
|
||||||
end
|
|
||||||
agentStrings = ["Total"; agentStrings];
|
|
||||||
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
|
|
||||||
|
|
||||||
obj.performancePlot = o;
|
obj.performancePlot = o;
|
||||||
end
|
end
|
||||||
@@ -10,7 +10,6 @@ function [obj] = run(obj)
|
|||||||
v = obj.setupVideoWriter();
|
v = obj.setupVideoWriter();
|
||||||
v.open();
|
v.open();
|
||||||
|
|
||||||
steady = 0;
|
|
||||||
for ii = 1:size(obj.times, 1)
|
for ii = 1:size(obj.times, 1)
|
||||||
% Display current sim time
|
% Display current sim time
|
||||||
obj.t = obj.times(ii);
|
obj.t = obj.times(ii);
|
||||||
|
|||||||
@@ -40,15 +40,13 @@ function [obj] = updatePlots(obj, updatePartitions)
|
|||||||
|
|
||||||
% Update performance plot
|
% Update performance plot
|
||||||
if updatePartitions
|
if updatePartitions
|
||||||
% find index corresponding to the current time
|
|
||||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||||
nowIdx = find(nowIdx);
|
% set(obj.performancePlot(1), 'YData', obj.perf(end, 1:find(nowIdx)));
|
||||||
|
obj.performancePlot(1).YData(nowIdx) = obj.perf(end, nowIdx);
|
||||||
% Re-normalize performance plot
|
|
||||||
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
|
|
||||||
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
|
|
||||||
for ii = 2:size(obj.performancePlot, 1)
|
for ii = 2:size(obj.performancePlot, 1)
|
||||||
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
|
obj.performancePlot(ii).YData(nowIdx) = obj.perf(ii, nowIdx);
|
||||||
end
|
end
|
||||||
|
drawnow;
|
||||||
end
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
@@ -10,11 +10,8 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
|
|||||||
value (:, 1) double;
|
value (:, 1) double;
|
||||||
end
|
end
|
||||||
|
|
||||||
% compute direct distance and distance projected onto the ground
|
|
||||||
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
|
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
|
||||||
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
|
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
|
||||||
|
|
||||||
% compute tilt angle
|
|
||||||
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
|
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
|
||||||
|
|
||||||
% Membership functions
|
% Membership functions
|
||||||
|
|||||||
@@ -104,11 +104,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
if ii == 1
|
if ii == 1
|
||||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||||
candidatePos = tc.domain.random();
|
candidatePos = tc.domain.random();
|
||||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
candidatePos(3) = 2 + rand * 2; % place agents at decent altitudes for sensing
|
||||||
end
|
end
|
||||||
else
|
else
|
||||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
|
||||||
end
|
end
|
||||||
|
|
||||||
% Make sure that the candidate position is within the
|
% Make sure that the candidate position is within the
|
||||||
@@ -240,7 +239,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
end
|
end
|
||||||
else
|
else
|
||||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
|
||||||
end
|
end
|
||||||
|
|
||||||
% Make sure that the candidate position is within the
|
% Make sure that the candidate position is within the
|
||||||
@@ -361,12 +359,10 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
sensor = sigmoidSensor;
|
sensor = sigmoidSensor;
|
||||||
% Homogeneous sensor model parameters
|
% Homogeneous sensor model parameters
|
||||||
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
|
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
|
||||||
|
f = sensor.plotParameters();
|
||||||
% Heterogeneous sensor model parameters
|
% Heterogeneous sensor model parameters
|
||||||
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||||
|
|
||||||
% Plot sensor parameters (optional)
|
|
||||||
% f = sensor.plotParameters();
|
|
||||||
|
|
||||||
% Initialize agents
|
% Initialize agents
|
||||||
tc.agents = {agent; agent};
|
tc.agents = {agent; agent};
|
||||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||||
@@ -380,7 +376,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
|
|
||||||
% Initialize the simulation
|
% Initialize the simulation
|
||||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||||
close(tc.testClass.fPerf);
|
|
||||||
end
|
end
|
||||||
function test_single_partition(tc)
|
function test_single_partition(tc)
|
||||||
% make basic domain
|
% make basic domain
|
||||||
@@ -388,7 +383,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||||
|
|
||||||
% make basic sensing objective
|
% make basic sensing objective
|
||||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
|
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||||
|
|
||||||
% Initialize agent collision geometry
|
% Initialize agent collision geometry
|
||||||
geometry1 = rectangularPrism;
|
geometry1 = rectangularPrism;
|
||||||
@@ -400,8 +395,6 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
||||||
alphaDist = l/2; % half of domain length/width
|
alphaDist = l/2; % half of domain length/width
|
||||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
||||||
|
|
||||||
% Plot sensor parameters (optional)
|
|
||||||
f = sensor.plotParameters();
|
f = sensor.plotParameters();
|
||||||
|
|
||||||
% Initialize agents
|
% Initialize agents
|
||||||
@@ -410,7 +403,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
|||||||
|
|
||||||
% Initialize the simulation
|
% Initialize the simulation
|
||||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||||
close(tc.testClass.fPerf);
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|||||||
@@ -33,29 +33,20 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
|
|||||||
betaDist = 3;
|
betaDist = 3;
|
||||||
alphaTilt = 15; % degrees
|
alphaTilt = 15; % degrees
|
||||||
betaTilt = 3;
|
betaTilt = 3;
|
||||||
h = 1e-6;
|
|
||||||
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
||||||
|
|
||||||
% Plot (optional)
|
% Plot
|
||||||
% tc.testClass.plotParameters();
|
tc.testClass.plotParameters();
|
||||||
|
|
||||||
% Anticipate perfect performance for a point directly below and
|
% Performance at current position should be maximized (1)
|
||||||
% extremely close
|
% some wiggle room is needed for certain parameter conditions,
|
||||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [0, 0, 0]), 1, 'RelTol', 1e-3);
|
% e.g. small alphaDist and betaDist produce mu_d slightly < 1
|
||||||
|
tc.verifyEqual(tc.testClass.sensorPerformance(zeros(1, 3), NaN, 0, zeros(1, 3)), 1, 'AbsTol', 1e-3);
|
||||||
% It looks like mu_t can max out at really low values like 0.37
|
% It looks like mu_t can max out at really low values like 0.37
|
||||||
% when alphaTilt and betaTilt are small, which seems wrong
|
% when alphaTilt and betaTilt are small, which seems wrong
|
||||||
|
|
||||||
% Performance at nadir point, distance alphaDist should be 1/2 exactly
|
% Performance at distance alphaDist should be 1/2
|
||||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2);
|
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2, 'AbsTol', 1e-3);
|
||||||
|
|
||||||
% Performance at (almost) 0 distance, alphaTilt should be 1/2
|
|
||||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [tand(alphaTilt)*h, 0, 0]), 1/2, 'RelTol', 1e-3);
|
|
||||||
|
|
||||||
% Performance at great distance should be 0
|
|
||||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, 10], NaN, 0, [0, 0, 0]), 0, 'AbsTol', 1e-9);
|
|
||||||
|
|
||||||
% Performance at great tilt should be 0
|
|
||||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [5, 5, 0]), 0, 'AbsTol', 1e-9);
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user