2 Commits

7 changed files with 20 additions and 51 deletions

View File

@@ -14,8 +14,6 @@ classdef miSim
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
partitioning = NaN;
performance = NaN; % current cumulative sensor performance
fPerf; % performance plot figure
end
properties (Access = private)
@@ -31,6 +29,7 @@ classdef miSim
graphPlot; % objects for abstract network graph plot
partitionPlot; % objects for partition plot
fPerf; % performance plot figure
performancePlot; % objects for sensor performance plot
% Indicies for various plot types in the main tiled layout figure

View File

@@ -24,13 +24,5 @@ function obj = plotPerformance(obj)
hold(obj.fPerf.Children(1), 'off');
end
% Add legend
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
for ii = 1:size(agentStrings, 1)
agentStrings(ii) = sprintf(agentStrings(ii), ii);
end
agentStrings = ["Total"; agentStrings];
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
obj.performancePlot = o;
end

View File

@@ -10,7 +10,6 @@ function [obj] = run(obj)
v = obj.setupVideoWriter();
v.open();
steady = 0;
for ii = 1:size(obj.times, 1)
% Display current sim time
obj.t = obj.times(ii);

View File

@@ -40,15 +40,13 @@ function [obj] = updatePlots(obj, updatePartitions)
% Update performance plot
if updatePartitions
% find index corresponding to the current time
nowIdx = [0; obj.partitioningTimes] == obj.t;
nowIdx = find(nowIdx);
% Re-normalize performance plot
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
% set(obj.performancePlot(1), 'YData', obj.perf(end, 1:find(nowIdx)));
obj.performancePlot(1).YData(nowIdx) = obj.perf(end, nowIdx);
for ii = 2:size(obj.performancePlot, 1)
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
obj.performancePlot(ii).YData(nowIdx) = obj.perf(ii, nowIdx);
end
drawnow;
end
end

View File

@@ -10,11 +10,8 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
value (:, 1) double;
end
% compute direct distance and distance projected onto the ground
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
% compute tilt angle
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
% Membership functions

View File

@@ -104,11 +104,10 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
candidatePos(3) = 2 + rand * 2; % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -240,7 +239,6 @@ classdef test_miSim < matlab.unittest.TestCase
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -361,12 +359,10 @@ classdef test_miSim < matlab.unittest.TestCase
sensor = sigmoidSensor;
% Homogeneous sensor model parameters
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
f = sensor.plotParameters();
% Heterogeneous sensor model parameters
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Plot sensor parameters (optional)
% f = sensor.plotParameters();
% Initialize agents
tc.agents = {agent; agent};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
@@ -380,7 +376,6 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
function test_single_partition(tc)
% make basic domain
@@ -388,7 +383,7 @@ classdef test_miSim < matlab.unittest.TestCase
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
geometry1 = rectangularPrism;
@@ -400,8 +395,6 @@ classdef test_miSim < matlab.unittest.TestCase
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
% Plot sensor parameters (optional)
f = sensor.plotParameters();
% Initialize agents
@@ -410,7 +403,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
end

View File

@@ -33,29 +33,20 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
betaDist = 3;
alphaTilt = 15; % degrees
betaTilt = 3;
h = 1e-6;
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
% Plot (optional)
% tc.testClass.plotParameters();
% Plot
tc.testClass.plotParameters();
% Anticipate perfect performance for a point directly below and
% extremely close
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [0, 0, 0]), 1, 'RelTol', 1e-3);
% Performance at current position should be maximized (1)
% some wiggle room is needed for certain parameter conditions,
% e.g. small alphaDist and betaDist produce mu_d slightly < 1
tc.verifyEqual(tc.testClass.sensorPerformance(zeros(1, 3), NaN, 0, zeros(1, 3)), 1, 'AbsTol', 1e-3);
% It looks like mu_t can max out at really low values like 0.37
% when alphaTilt and betaTilt are small, which seems wrong
% Performance at nadir point, distance alphaDist should be 1/2 exactly
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2);
% Performance at (almost) 0 distance, alphaTilt should be 1/2
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [tand(alphaTilt)*h, 0, 0]), 1/2, 'RelTol', 1e-3);
% Performance at great distance should be 0
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, 10], NaN, 0, [0, 0, 0]), 0, 'AbsTol', 1e-9);
% Performance at great tilt should be 0
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [5, 5, 0]), 0, 'AbsTol', 1e-9);
% Performance at distance alphaDist should be 1/2
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2, 'AbsTol', 1e-3);
end
end