17 Commits

Author SHA1 Message Date
f7b28cdf4f fixed issues in sigmoid sensor model causing inverted response (annular partitions) 2025-11-24 17:39:16 -08:00
66bbfe52ca fixed initial altitude range 2025-11-18 13:56:25 -08:00
b62f0f6410 better random agent placement with respect to sensor capabilities 2025-11-18 09:08:12 -08:00
fe5f3bb2be cleaned up plotting 2025-11-18 09:08:12 -08:00
35b15db5d3 Added plotting of sigmoid sensor parameters 2025-11-18 09:08:12 -08:00
f50e3e2832 started unit test for sigmoid sensor performance fcns 2025-11-18 09:08:12 -08:00
e53b721f34 started performance plot 2025-11-18 09:08:12 -08:00
db20f11ea8 added sensor performance metric 2025-11-18 09:08:12 -08:00
86342c4572 updated plotting org 2025-11-18 09:08:12 -08:00
b9a2a83ac6 added randomness to sensor parameters 2025-11-18 09:08:12 -08:00
9dbd29849f cleaned up randomly generated obstacle collision code 2025-11-18 09:08:12 -08:00
12dbde7a02 cleaned up obstacle generation 2025-11-18 09:08:12 -08:00
c9ac9d7725 adjusted partitioning to allow non-assignment 2025-11-18 09:08:12 -08:00
afa5d79c1d refactored sensing objective into domain, random inits 2025-11-18 09:08:12 -08:00
e0f365b21b reorganized code into separate files 2025-11-18 09:08:12 -08:00
4363914215 fixed cone radius and sigmoid sensor test parameters 2025-11-18 09:08:12 -08:00
855b28b066 added large factor to sigmoid sensor performance calculation 2025-11-18 09:08:12 -08:00
56 changed files with 51 additions and 35 deletions

3
.gitignore vendored
View File

@@ -45,3 +45,6 @@ sandbox/*
# Videos # Videos
*.mp4 *.mp4
*.avi *.avi
# Figures
*.fig

View File

@@ -29,5 +29,5 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
% Initialize FOV cone % Initialize FOV cone
obj.fovGeometry = cone; obj.fovGeometry = cone;
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tan(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label)); obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tand(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
end end

View File

@@ -20,15 +20,20 @@ function obj = partition(obj)
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
agentInds = cat(3, agentInds{:}); agentInds = cat(3, agentInds{:});
% Get highest performing agent's index % Use highest performing agent's index to form partitions
[m, n, ~] = size(agentInds); [m, n, ~] = size(agentInds);
[jj, kk] = ndgrid(1:m, 1:n); [jj, kk] = ndgrid(1:m, 1:n);
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx)); obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
% Get individual agent sensor performance % Get individual agent sensor performance
nowIdx = [0; obj.partitioningTimes] == obj.t; nowIdx = [0; obj.partitioningTimes] == obj.t;
if isnan(obj.t)
nowIdx = 1;
end
for ii = 1:size(obj.agents, 1) for ii = 1:size(obj.agents, 1)
obj.perf(ii, nowIdx) = sum(agentPerformances(sub2ind(size(agentInds), jj, kk, ii)), 'all'); idx = obj.partitioning == ii;
agentPerformance = squeeze(agentPerformances(:, :, ii));
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
end end
% Current total performance % Current total performance

View File

@@ -29,8 +29,11 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
obj.objectiveFunction = objectiveFunction; obj.objectiveFunction = objectiveFunction;
obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X)); obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X));
% Normalize
obj.values = obj.values ./ max(obj.values, [], "all");
% store ground position % store ground position
idx = obj.values == max(obj.values, [], "all"); idx = obj.values == 1;
obj.groundPos = [obj.X(idx), obj.Y(idx)]; obj.groundPos = [obj.X(idx), obj.Y(idx)];
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective") assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensingModels" Type="Relative"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="420d04e4-3880-4a45-8609-11cb30d87302" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensorModels" Type="Relative"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="d143c27d-6824-4569-9093-8150b60976cb" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sensorModels" type="File"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sensingModels" type="File"/>

View File

@@ -12,7 +12,7 @@ function f = plotParameters(obj)
% Sample membership functions % Sample membership functions
d_x = obj.distanceMembership(d); d_x = obj.distanceMembership(d);
t_x = obj.tiltMembership(deg2rad(t)); t_x = obj.tiltMembership(t);
% Plot resultant sigmoid curves % Plot resultant sigmoid curves
f = figure; f = figure;

View File

@@ -12,7 +12,7 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference) x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), x) - agentTilt; tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
% Membership functions % Membership functions
mu_d = obj.distanceMembership(d); mu_d = obj.distanceMembership(d);

View File

@@ -5,7 +5,7 @@ classdef sigmoidSensor
betaDist = NaN; betaDist = NaN;
alphaPan = NaN; alphaPan = NaN;
betaPan = NaN; betaPan = NaN;
alphaTilt = NaN; alphaTilt = NaN; % degrees
betaTilt = NaN; betaTilt = NaN;
end end

View File

@@ -1,7 +1,7 @@
function x = tiltMembership(obj, t) function x = tiltMembership(obj, t)
arguments (Input) arguments (Input)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')}; obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
t (:, 1) double; t (:, 1) double; % degrees
end end
arguments (Output) arguments (Output)
x (:, 1) double; x (:, 1) double;

View File

@@ -25,8 +25,8 @@ classdef test_miSim < matlab.unittest.TestCase
objective = sensingObjective; objective = sensingObjective;
% Agents % Agents
minAgents = 3; % Minimum number of agents to be randomly generated minAgents = 2; % Minimum number of agents to be randomly generated
maxAgents = 6; % Maximum number of agents to be randomly generated maxAgents = 4; % Maximum number of agents to be randomly generated
sensingLength = 0.05; % length parameter used by sensing function sensingLength = 0.05; % length parameter used by sensing function
agents = cell(0, 1); agents = cell(0, 1);
@@ -42,11 +42,11 @@ classdef test_miSim < matlab.unittest.TestCase
betaTiltMax = 15; betaTiltMax = 15;
alphaDistMin = 2.5; alphaDistMin = 2.5;
alphaDistMax = 3; alphaDistMax = 3;
alphaTiltMin = deg2rad(15); alphaTiltMin = 15; % degrees
alphaTiltMax = deg2rad(30); alphaTiltMax = 30; % degrees
% Communications % Communications
comRange = 5; % Maximum range between agents that forms a communications link comRange = 8; % Maximum range between agents that forms a communications link
end end
% Setup for each test % Setup for each test
@@ -104,7 +104,7 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1 if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2) while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random(); candidatePos = tc.domain.random();
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing candidatePos(3) = 2 + rand * 2; % place agents at decent altitudes for sensing
end end
else else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2)); candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
@@ -349,36 +349,38 @@ classdef test_miSim < matlab.unittest.TestCase
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange); tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry % Initialize agent collision geometry
dh = [0,0,-1]; % bias agent altitude from domain center
geometry1 = rectangularPrism; geometry1 = rectangularPrism;
geometry2 = geometry1; geometry2 = geometry1;
geometry1 = geometry1.initialize([tc.domain.center + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1)); geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
geometry2 = geometry2.initialize([tc.domain.center - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2)); geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
% Initialize agent sensor model % Initialize agent sensor model
sensor = sigmoidSensor; sensor = sigmoidSensor;
% Homogeneous sensor model parameters % Homogeneous sensor model parameters
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3); sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
f = sensor.plotParameters(); f = sensor.plotParameters();
% Heterogeneous sensor model parameters % Heterogeneous sensor model parameters
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin)); % sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize agents % Initialize agents
tc.agents = {agent; agent}; tc.agents = {agent; agent};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1)); tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2)); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
% Optional third agent along the +Y axis % Optional third agent along the +Y axis
geometry3 = rectangularPrism; geometry3 = rectangularPrism;
geometry3 = geometry3.initialize([tc.domain.center - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3)); geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
tc.agents{3} = agent; tc.agents{3} = agent;
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3)); tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
% Initialize the simulation % Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter); tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
end end
function test_annular_partition(tc) function test_single_partition(tc)
% make basic domain % make basic domain
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective % make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange); tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
@@ -390,7 +392,9 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize agent sensor model % Initialize agent sensor model
sensor = sigmoidSensor; sensor = sigmoidSensor;
% Homogeneous sensor model parameters % Homogeneous sensor model parameters
sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 0.3641, 13); % sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
f = sensor.plotParameters(); f = sensor.plotParameters();
% Initialize agents % Initialize agents
@@ -399,6 +403,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize the simulation % Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter); tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
end end
end end

View File

@@ -13,8 +13,8 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
betaTiltMax = 15; betaTiltMax = 15;
alphaDistMin = 2.5; alphaDistMin = 2.5;
alphaDistMax = 3; alphaDistMax = 3;
alphaTiltMin = deg2rad(15); alphaTiltMin = 15; % degrees
alphaTiltMax = deg2rad(30); alphaTiltMax = 30; % degrees
end end
methods (TestMethodSetup) methods (TestMethodSetup)
@@ -31,7 +31,7 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
tc.testClass = sigmoidSensor; tc.testClass = sigmoidSensor;
alphaDist = 2.5; alphaDist = 2.5;
betaDist = 3; betaDist = 3;
alphaTilt = deg2rad(15); alphaTilt = 15; % degrees
betaTilt = 3; betaTilt = 3;
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt); tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);