classdef test_miSim < matlab.unittest.TestCase properties (Access = private) % System under test testClass = miSim; % Debug makeVideo = true; % disable video writing for big performance increase makePlots = true; % disable plotting for big performance increase (also disables video) plotCommsGeometry = false; % disable plotting communications geometries % Sim maxIter = 50; timestep = 0.05; % Domain domain = rectangularPrism; % domain geometry minDimension = 10; minAlt = 1; % minimum allowed agent altitude % Obstacles minNumObstacles = 1; % Minimum number of obstacles to be randomly generated maxNumObstacles = 3; % Maximum number of obstacles to be randomly generated minObstacleSize = 1; % Minimum size of a randomly generated obstacle maxObstacleSize = 6; % Maximum size of a randomly generated obstacle obstacles = cell(1, 0); % Objective discretizationStep = 0.01; % Step at which the objective function is solved in X and Y space protectedRange = 1; % Minimum distance between the sensing objective and the edge of the domain objective = sensingObjective; % Agents initialStepSize = 0.2; % gradient ascent step size at the first iteration. Decreases linearly to 0 based on maxIter. minAgents = 3; % Minimum number of agents to be randomly generated maxAgents = 4; % Maximum number of agents to be randomly generated agents = cell(0, 1); % Collision minCollisionRange = 0.1; % Minimum randomly generated collision geometry size maxCollisionRange = 0.5; % Maximum randomly generated collision geometry size collisionRanges = NaN; % Sensing betaDistMin = 3; betaDistMax = 15; betaTiltMin = 3; betaTiltMax = 15; alphaDistMin = 2.5; alphaDistMax = 3; alphaTiltMin = 15; % degrees alphaTiltMax = 30; % degrees sensor = sigmoidSensor; % Communications minCommsRange = 3; % Minimum randomly generated collision geometry size maxCommsRange = 5; % Maximum randomly generated collision geometry size commsRanges = NaN; % Constraints barrierGain = 100; barrierExponent = 3; end % Setup for each test methods (TestMethodSetup) % Generate a random domain function tc = setDomain(tc) % random integer-dimensioned cubic domain tc.domain = tc.domain.initializeRandom(REGION_TYPE.DOMAIN, "Domain", tc.minDimension); % Random bivariate normal PDF objective tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.discretizationStep, tc.protectedRange); end % Instantiate agents function tc = setAgents(tc) % Agents will be initialized under different parameters in individual test cases % Instantiate a random number of agents according to parameters for ii = 1:randi([tc.minAgents, tc.maxAgents]) tc.agents{ii, 1} = agent; end % Random collision ranges for each agent tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange); % Random commuunications ranges for each agent tc.commsRanges = tc.minCommsRange + rand(size(tc.agents, 1), 1) * (tc.maxCommsRange - tc.minCommsRange); end end methods (Test) % Test methods function misim_initialization(tc) % randomly create obstacles nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles); tc.obstacles = cell(nGeom, 1); % Iterate over obstacles to initialize for ii = 1:size(tc.obstacles, 1) badCandidate = true; while badCandidate % Instantiate a rectangular prism obstacle inside the domain tc.obstacles{ii} = rectangularPrism; tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt); % Check if the obstacle collides with an existing obstacle if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii}) badCandidate = false; end end end % Add agents individually, ensuring that each addition does not % invalidate the initialization setup for ii = 1:size(tc.agents, 1) initInvalid = true; while initInvalid candidatePos = [tc.domain.objective.groundPos, 0]; % Generate a random position for the agent based on % existing agent positions if ii == 1 while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2) candidatePos = tc.domain.random(); candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing end else candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2)); candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing end % Make sure that the candidate position is within the % domain if ~tc.domain.contains(candidatePos) continue; end % Make sure that the candidate position does not crowd % the sensing objective and create boring scenarios if agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2) continue; end % Make sure that there exist unobstructed lines of sight at % appropriate ranges to form a connected communications % graph between the agents connections = false(1, ii - 1); for jj = 1:(ii - 1) if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange % Check new agent position against all existing % agent positions for communications range connections(jj) = true; for kk = 1:size(tc.obstacles, 1) if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos) connections(jj) = false; end end end end % New agent must be connected to an existing agent to % be valid if ii ~= 1 && ~any(connections) continue; end % Initialize candidate agent collision geometry candidateGeometry = rectangularPrism; candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION); % Initialize candidate agent sensor model tc.sensor = tc.sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin)); % Initialize candidate agent newAgent = tc.agents{ii}.initialize(candidatePos, candidateGeometry, tc.sensor, tc.comRange, tc.maxIter, tc.initialStepSize); % Make sure candidate agent doesn't collide with % domain violation = false; for jj = 1:size(newAgent.collisionGeometry.vertices, 1) % Check if collision geometry exits domain if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3)) violation = true; break; end end if violation continue; end % Make sure candidate doesn't collide with obstacles violation = false; for kk = 1:size(tc.obstacles, 1) if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry) violation = true; break; end end if violation continue; end % Make sure candidate doesn't collide with existing % agents violation = false; for kk = 1:(ii - 1) if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry) violation = true; break; end end if violation continue; end % Candidate agent is valid, store to pass in to sim initInvalid = false; tc.agents{ii} = newAgent; end end % Initialize the simulation tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); end function misim_run(tc) % randomly create obstacles nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles); tc.obstacles = cell(nGeom, 1); % Iterate over obstacles to initialize for ii = 1:size(tc.obstacles, 1) badCandidate = true; while badCandidate % Instantiate a rectangular prism obstacle inside the domain tc.obstacles{ii} = rectangularPrism; tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt); % Check if the obstacle collides with an existing obstacle if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii}) badCandidate = false; end end end % Add agents individually, ensuring that each addition does not % invalidate the initialization setup for ii = 1:size(tc.agents, 1) initInvalid = true; while initInvalid candidatePos = [tc.domain.objective.groundPos, 0]; % Generate a random position for the agent based on % existing agent positions if ii == 1 while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2) candidatePos = tc.domain.random(); candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing end else candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2)); candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing end % Make sure that the candidate position is within the % domain if ~tc.domain.contains(candidatePos) continue; end % Make sure that the candidate position does not crowd % the sensing objective and create boring scenarios if agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2) continue; end % Make sure that there exist unobstructed lines of sight at % appropriate ranges to form a connected communications % graph between the agents connections = false(1, ii - 1); for jj = 1:(ii - 1) if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange % Check new agent position against all existing % agent positions for communications range connections(jj) = true; for kk = 1:size(tc.obstacles, 1) if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos) connections(jj) = false; end end end end % New agent must be connected to an existing agent to % be valid if ii ~= 1 && ~any(connections) continue; end % Initialize candidate agent collision geometry % candidateGeometry = rectangularPrism; % candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION); candidateGeometry = spherical; candidateGeometry = candidateGeometry.initialize(candidatePos, tc.collisionRanges(ii), REGION_TYPE.COLLISION); % Initialize candidate agent sensor model tc.sensor = tc.sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin)); % Initialize candidate agent newAgent = tc.agents{ii}.initialize(candidatePos, candidateGeometry, tc.sensor, tc.comRange, tc.maxIter, tc.initialStepSize); % Make sure candidate agent doesn't collide with % domain violation = false; for jj = 1:size(newAgent.collisionGeometry.vertices, 1) % Check if collision geometry exits domain if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3)) violation = true; break; end end if violation continue; end % Make sure candidate doesn't collide with obstacles violation = false; for kk = 1:size(tc.obstacles, 1) if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry) violation = true; break; end end if violation continue; end % Make sure candidate doesn't collide with existing % agents violation = false; for kk = 1:(ii - 1) if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry) violation = true; break; end end if violation continue; end % Candidate agent is valid, store to pass in to sim initInvalid = false; tc.agents{ii} = newAgent; end end % Initialize the simulation tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Write out parameters tc.testClass.writeParams(); % Run simulation loop tc.testClass = tc.testClass.run(); end function test_basic_partitioning(tc) % place agents a fixed distance +/- X from the domain's center d = 1; % Initialize agent collision geometry tc.agents = {agent; agent; agent}; geometry1 = spherical; geometry2 = geometry1; geometry3 = geometry1; geometry1 = geometry1.initialize(tc.domain.center + [d, 0, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry2.initialize(tc.domain.center - [d, 0, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION); geometry3 = geometry3.initialize(tc.domain.center - [0, d, 0], tc.collisionRanges(3), REGION_TYPE.COLLISION); % Initialize agent sensor model with fixed parameters tc.sensor = tc.sensor.initialize(tc.domain.maxCorner(3) / 2, 9, 22.5, 9); % Initialize agents tc.commsRanges = 3 * d * ones(size(tc.agents)); tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], geometry3, tc.sensor, tc.commsRanges(3), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.obstacles = cell(0, 1); tc.makePlots = false; tc.makeVideo = false; tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); centerIdx = floor(size(tc.testClass.partitioning, 1) / 2); tc.verifyEqual(tc.testClass.partitioning(centerIdx, centerIdx:(centerIdx + 2)), [2, 3, 1]); % all three near center tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all')); % more non-assignments than partition 1 assignments tc.verifyLessThan(sum(tc.testClass.partitioning == 2, 'all'), sum(tc.testClass.partitioning == 1, 'all')); % more partition 1 assignments than partition 2 assignments tc.verifyLessThan(sum(tc.testClass.partitioning == 3, 'all'), sum(tc.testClass.partitioning == 2, 'all')); % more partition 3 assignments than partition 2 assignments tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1; 2; 3;]); end function test_single_partition(tc) % Initialize agent collision geometry tc.agents = {agent}; geometry1 = spherical; geometry1 = geometry1.initialize([tc.domain.center(1:2), 3], tc.collisionRanges(1), REGION_TYPE.COLLISION); % Initialize agent sensor model with fixed parameters tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 20, 3); % Initialize agents tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.obstacles = cell(0, 1); tc.makePlots = false; tc.makeVideo = false; tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); close(tc.testClass.fPerf); tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1]); tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all')); end function test_single_agent_gradient_ascent(tc) % make basic domain tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([7, 6]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent}; geometry1 = rectangularPrism; geometry1 = geometry1.initialize([[tc.domain.center(1:2)-tc.domain.dimensions(1)/4, 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2)-tc.domain.dimensions(1)/4, 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION); % Initialize agent sensor model with fixed parameters tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 20, 3); % Initialize agents tc.maxIter = 75; tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2)-tc.domain.dimensions(1)/4, 3], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.obstacles = cell(0, 1); tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Run the simulation tc.testClass = tc.testClass.run();end function test_collision_avoidance(tc) % No obstacles % Fixed agent initial conditions % Exaggerated large collision geometries to test CA % make basic domain tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([3, 7]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent; agent}; tc.collisionRanges = 1.5 * ones(size(tc.agents)); d = [2.5, 0, 0]; geometry1 = spherical; geometry2 = spherical; geometry1 = geometry1.initialize(tc.domain.center + d, tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry2.initialize(tc.domain.center - d, tc.collisionRanges(2), REGION_TYPE.COLLISION); % Initialize agent sensor model with fixed parameters tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3); % Initialize agents tc.maxIter = 25; tc.commsRanges = 5 * ones(size(tc.agents)); tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + d, geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d, geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.obstacles = cell(0, 1); tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Run the simulation tc.testClass.run(); end function test_obstacle_avoidance(tc) % Right now, the communications constraint is violated here % Fixed single obstacle % Fixed two agents initial conditions % Exaggerated large collision geometries % make basic domain tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5.2195]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent; agent;}; tc.collisionRanges = 1.1 * ones(size(tc.agents)); d = [3, 0, 0]; yOffset = 1; % choice of 0 leads to the agents getting stuck attempting to go around the obstacle on both sides % choice of 1 leads to one agent easily going around while the other gets stuck and the communications link is broken geometry1 = spherical; geometry2 = geometry1; geometry1 = geometry1.initialize(tc.domain.center - d + [0, tc.collisionRanges(1) * 1.1 - yOffset, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry2.initialize(tc.domain.center - d - [0, tc.collisionRanges(2) * 1.1 + yOffset, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION); % Initialize agent sensor model with fixed parameters tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3); % Initialize obstacles obstacleLength = 1; tc.obstacles{1} = rectangularPrism; tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, tc.minAlt; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1"); % Initialize agents tc.commsRanges = (2 * tc.collisionRanges(1) + obstacleLength) * 0.9 * ones(size(tc.agents)); % defined such that they cannot go around the obstacle on both sides tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - d + [0, tc.collisionRanges(1) * 1.1 - yOffset, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d - [0, tc.collisionRanges(2) *1.1 + yOffset, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Run the simulation tc.testClass.run(); end function test_communications_constraint(tc) % No obstacles % Fixed two agents initial conditions % Negligible collision geometries % Non-standard domain with two objectives that will try to pull the % agents apart tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([2, 8; 8, 8]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent; agent;}; tc.collisionRanges = .25 * ones(size(tc.agents)); d = [1, 0, 0]; geometry1 = spherical; geometry2 = geometry1; geometry1 = geometry1.initialize(tc.domain.center + d, tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry2.initialize(tc.domain.center - d, tc.collisionRanges(2), REGION_TYPE.COLLISION); % Initialize agent sensor model tc.sensor = sigmoidSensor; tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3); % Initialize obstacles tc.obstacles = {}; % Initialize agents tc.maxIter = 50; tc.commsRanges = 4 * ones(size(tc.agents)); % defined such that they cannot reach their objective without breaking connectivity tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + d, geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d, geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Run the simulation tc.testClass = tc.testClass.run(); end function test_obstacle_permits_comms_LOS(tc) % Fixed single obstacle % Fixed two agents initial conditions % Exaggerated large communications radius % make basic domain tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3); tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent; agent;}; tc.collisionRanges = .25 * ones(size(tc.agents)); d = 2; geometry1 = spherical; geometry2 = geometry1; geometry1 = geometry1.initialize(tc.domain.center - [d, 0, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry2.initialize(tc.domain.center - [0, d, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION); % Initialize agent sensor model tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3); % Initialize agents tc.maxIter = 125; tc.commsRanges = 5 * ones(size(tc.agents)); tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - [d, 0, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [0, d, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); % Initialize obstacles obstacleLength = 1.5; tc.obstacles{1} = rectangularPrism; tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, 0; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1"); % Initialize the simulation tc.minAlt = 0; tc.makePlots = false; tc.makeVideo = false; tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Communications link should be established tc.assertEqual(tc.testClass.adjacency, logical(true(2))); end function test_LNA_case_1(tc) % based on example in meeting % no obstacles % fixed 5 agents initial conditions % unit communicaitons radius % negligible collision radius % make basic domain tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent; agent; agent; agent; agent;}; tc.collisionRanges = .01 * ones(size(tc.agents)); d = 1; geometry5 = spherical; geometry1 = geometry5.initialize(tc.domain.center + [d, 0, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry5.initialize(tc.domain.center, tc.collisionRanges(2), REGION_TYPE.COLLISION); geometry3 = geometry5.initialize(tc.domain.center + [-d, d, 0], tc.collisionRanges(3), REGION_TYPE.COLLISION); geometry4 = geometry5.initialize(tc.domain.center + [-2*d, d, 0], tc.collisionRanges(4), REGION_TYPE.COLLISION); geometry5 = geometry5.initialize(tc.domain.center + [0, d, 0], tc.collisionRanges(5), REGION_TYPE.COLLISION); % Initialize agent sensor model tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3); % Initialize agents tc.maxIter = 125; tc.commsRanges = ones(size(tc.agents)); tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center, geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [-d, d, 0], geometry3, tc.sensor, tc.commsRanges(3), tc.maxIter, tc.initialStepSize); tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [-2*d, d, 0], geometry4, tc.sensor, tc.commsRanges(4), tc.maxIter, tc.initialStepSize); tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, d, 0], geometry5, tc.sensor, tc.commsRanges(5), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.minAlt = 0; tc.makePlots = false; tc.makeVideo = false; tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Constraint adjacency matrix defined by LNA should be as follows tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ... [ 1, 1, 0, 0, 0; ... 1, 1, 0, 0, 1; ... 0, 0, 1, 1, 1; 0, 0, 1, 1, 0; 0, 1, 1, 0, 1;])); end function test_LNA_case_2(tc) % based on example in paper Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information % No obstacles % Fixed 7 agents initial conditions % unitary communicaitons radius % negligible collision radius % make basic domain tc.minDimension = 10; % domain size tc.domain = tc.domain.initialize([zeros(1, 3); tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); % make basic sensing objective tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange); % Initialize agent collision geometry tc.agents = {agent; agent; agent; agent; agent; agent; agent;}; tc.collisionRanges = .01 * ones(size(tc.agents)); d = 1; geometry7 = spherical; geometry1 = geometry7.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], tc.collisionRanges(1), REGION_TYPE.COLLISION); geometry2 = geometry7.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION); geometry3 = geometry7.initialize(tc.domain.center + [0.9 * d, 0, 0], tc.collisionRanges(3), REGION_TYPE.COLLISION); geometry4 = geometry7.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], tc.collisionRanges(4), REGION_TYPE.COLLISION); geometry5 = geometry7.initialize(tc.domain.center + [0, 0.9 * d, 0], tc.collisionRanges(5), REGION_TYPE.COLLISION); geometry6 = geometry7.initialize(tc.domain.center, tc.collisionRanges(6), REGION_TYPE.COLLISION); geometry7 = geometry7.initialize(tc.domain.center + [d/2, d/2, 0], tc.collisionRanges(7), REGION_TYPE.COLLISION); % Initialize agent sensor model tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3); % Initialize agents tc.maxIter = 125; tc.commsRanges = d * ones(size(tc.agents)); tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize); tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize); tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [0.9 * d, 0, 0], geometry3, tc.sensor, tc.commsRanges(3), tc.maxIter, tc.initialStepSize); tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], geometry4, tc.sensor, tc.commsRanges(4), tc.maxIter, tc.initialStepSize); tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, 0.9 * d, 0], geometry5, tc.sensor, tc.commsRanges(5), tc.maxIter, tc.initialStepSize); tc.agents{6} = tc.agents{6}.initialize(tc.domain.center, geometry6, tc.sensor, tc.commsRanges(6), tc.maxIter, tc.initialStepSize); tc.agents{7} = tc.agents{7}.initialize(tc.domain.center + [d/2, d/2, 0], geometry7, tc.sensor, tc.commsRanges(7), tc.maxIter, tc.initialStepSize); % Initialize the simulation tc.minAlt = 0; tc.makePlots = false; tc.makeVideo = false; tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo); % Constraint adjacency matrix defined by LNA should be as follows tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ... [ 1, 1, 0, 0, 0, 0, 0; ... 1, 1, 0, 0, 1, 0, 0; ... 0, 0, 1, 1, 0, 0, 0; 0, 0, 1, 1, 0, 1, 0; 0, 1, 0, 0, 1, 1, 0; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 0, 1, 1; ])); end end methods function c = obstacleCollisionCheck(~, obstacles, obstacle) % Check if the obstacle intersects with any other obstacles c = false; for ii = 1:size(obstacles, 1) if geometryIntersects(obstacles{ii}, obstacle) c = true; end end end end end