classdef test_miSim < matlab.unittest.TestCase properties (Access = private) testClass = miSim; % Domain domain = rectangularPrismConstraint; % Obstacles constraintGeometries = cell(1, 0); % Objective objective = sensingObjective; objectiveFunction = @(x, y) 0; objectiveDiscretizationStep = 0.01; % Agents minAgents = 3; maxAgents = 9; agents = cell(1, 0); % Collision minCollisionRange = 0.1; maxCollisionRange = 0.5; collisionRanges = NaN; % Communications comRange = 5; end % Setup for each test methods (TestMethodSetup) % Generate a random domain function tc = setDomain(tc) % random integer-sized domain within [-10, 10] in all dimensions tc.domain = tc.domain.initialize(ceil([rand * -10, rand * 10; rand * -10, rand * 10; rand * -10, rand * 10]), REGION_TYPE.DOMAIN, "Domain"); end % Generate a random sensing objective within that domain function tc = setSensingObjective(tc) mu = tc.domain.random(); sig = [3, 1; 1, 4]; tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1, 1:2), sig); tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3, 1), tc.objectiveDiscretizationStep); end % Instantiate agents, they will be initialized under different % parameters in individual test cases function tc = setAgents(tc) for ii = 1:randi([tc.minAgents, tc.maxAgents]) tc.agents{ii, 1} = agent; end tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange); end end methods (Test) % Test methods function misim_initialization(tc) % randomly create 2-3 constraint geometries nGeom = 1 + randi(2); tc.constraintGeometries = cell(nGeom, 1); for ii = 1:size(tc.constraintGeometries, 1) % Instantiate a rectangular prism constraint that spans the % domain's height tc.constraintGeometries{ii, 1} = rectangularPrismConstraint; % Randomly come up with constraint geometries until they % fit within the domain candidateMinCorner = -Inf(3, 1); candidateMaxCorner = Inf(3, 1); % make sure the obstacles don't contain the sensing objective obstructs = true; while obstructs % Make sure the obstacle is in the domain while any(candidateMinCorner(1:2, 1) < tc.domain.minCorner(1:2, 1)) candidateMinCorner = tc.domain.minCorner(1:3, 1) + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1); -Inf]; % random spots on the ground end while any(candidateMaxCorner(1:2, 1) > tc.domain.maxCorner(1:2, 1)) candidateMaxCorner = [candidateMinCorner(1:2, 1); 0] + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1) ./ 2; Inf]; % halved to keep from being excessively large end % once a domain-valid obstacle has been found, make % sure it doesn't obstruct the sensing target if all(candidateMinCorner(1:2, 1)' <= tc.objective.groundPos) && all(candidateMaxCorner(1:2, 1)' >= tc.objective.groundPos) % reset to try again candidateMinCorner = -Inf(3, 1); candidateMaxCorner = Inf(3, 1); else obstructs = false; end end % Reduce infinite dimensions to the domain candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner)); candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner)); % Initialize constraint geometry tc.constraintGeometries{ii, 1} = tc.constraintGeometries{ii, 1}.initialize([candidateMinCorner, candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii)); end % Repeat this until a connected set of agent initial conditions % is found by random chance connected = false; while ~connected % Randomly place agents in the domain for ii = 1:size(tc.agents, 1) posInvalid = true; while posInvalid % Initialize the agent into a random spot in the domain candidatePos = tc.domain.random(); candidateGeometry = rectangularPrismConstraint; tc.agents{ii, 1} = tc.agents{ii, 1}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii, 1) * ones(1, 3); candidatePos + tc.collisionRanges(ii, 1) * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii)); % Check obstacles to confirm that none are violated for jj = 1:size(tc.constraintGeometries, 1) inside = false; if tc.constraintGeometries{jj, 1}.contains(tc.agents{ii, 1}.pos) % Found a violation, stop checking inside = true; break; end end % Agent is inside obstacle, try again if inside continue; end % Create a collision geometry for this agent candidateGeometry = rectangularPrismConstraint; candidateGeometry = candidateGeometry.initialize([tc.agents{ii, 1}.pos - 0.1 * ones(1, 3); tc.agents{ii, 1}.pos + 0.1 * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)); % Check previously placed agents for collisions for jj = 1:(ii - 1) % Check if previously defined agents collide with % this one colliding = false; if candidateGeometry.contains(tc.agents{jj, 1}.pos) % Found a violation, stop checking colliding = true; break; end end % Agent is colliding with another, try again if ii ~= 1 && colliding continue; end % Allow to proceed since no obstacle/collision % violations were found posInvalid = false; end end % Collect all agent positions posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false); posArray = reshape([posArray{:}], size(tc.agents, 1), 3); % Communications checks adjacency = false(size(tc.agents, 1), size(tc.agents, 1)); for ii = 1:size(tc.agents, 1) % Compute distance from each to all agents for jj = 1:(size(tc.agents, 1)) if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange adjacency(ii, jj) = true; end end end % Check connectivity G = graph(adjacency); connected = all(conncomp(G) == 1); end % Initialize the simulation tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.constraintGeometries); % Plot domain f = tc.testClass.domain.plotWireframe; % Set plotting limits to focus on the domain xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]); ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]); zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]); % Plot constraint geometries for ii = 1:size(tc.testClass.constraintGeometries, 1) tc.testClass.constraintGeometries{ii, 1}.plotWireframe(f); end % Plot objective gradient f = tc.testClass.objective.plot(f); % Plot agents and their collision geometries for ii = 1:size(tc.testClass.agents, 1) f = tc.testClass.agents{ii, 1}.plot(f); f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f); end end end end