classdef test_miSim < matlab.unittest.TestCase properties (Access = private) testClass = miSim; % Domain domain = rectangularPrism; % Obstacles minNumObstacles = 1; maxNumObstacles = 3; obstacles = cell(1, 0); minObstacleDimension = 1; % Objective objective = sensingObjective; objectiveFunction = @(x, y) 0; objectiveDiscretizationStep = 0.01; protectedRange = 1; % Agents minAgents = 3; maxAgents = 9; agents = cell(1, 0); % Collision minCollisionRange = 0.1; maxCollisionRange = 0.5; collisionRanges = NaN; % Communications comRange = 5; end % Setup for each test methods (TestMethodSetup) % Generate a random domain function tc = setDomain(tc) % random integer-sized domain ranging from [0, 5] to [0, 25] in all dimensions L = ceil(5 + rand * 10 + rand * 10); tc.domain = tc.domain.initialize([zeros(1, 3); L * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain"); end % Generate a random sensing objective within that domain function tc = setSensingObjective(tc) mu = tc.domain.minCorner; while tc.domain.interiorDistance(mu) < tc.protectedRange mu = tc.domain.random(); end mu(3) = 0; assert(tc.domain.contains(mu)); sig = [2 + rand * 2, 1; 1, 2 + rand * 2]; tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1:2), sig); tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep); end % Instantiate agents, they will be initialized under different % parameters in individual test cases function tc = setAgents(tc) for ii = 1:randi([tc.minAgents, tc.maxAgents]) tc.agents{ii, 1} = agent; end tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange); end end methods (Test) % Test methods function misim_initialization(tc) % randomly create 2-3 obstacles nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles); tc.obstacles = cell(nGeom, 1); for ii = 1:size(tc.obstacles, 1) % Instantiate a rectangular prism obstacle tc.obstacles{ii, 1} = rectangularPrism; % Randomly come up with dimensions until they % fit within the domain candidateMinCorner = [-Inf(1, 2), 0]; candidateMaxCorner = Inf(1, 3); % make sure obstacles are not too small in any dimension tooSmall = true; while tooSmall % make sure the obstacles don't contain the sensing % objective or encroach on it too much obstructs = true; while obstructs % Make sure the obstacle is in the domain while any(candidateMinCorner < tc.domain.minCorner) candidateMinCorner = tc.domain.minCorner(1:3) + [(tc.domain.maxCorner(1:2) - tc.domain.minCorner(1:2)) .* rand(1, 2), 0]; % random spots on the ground end while any(candidateMaxCorner > tc.domain.maxCorner) candidateMaxCorner = [candidateMinCorner(1:2), 0] + ((tc.domain.maxCorner(1:3) - tc.domain.minCorner(1:3)) .* rand(1, 3) ./ 2); % halved to keep from being excessively large end % once a domain-valid obstacle has been found, make % sure it doesn't obstruct the sensing target if all(candidateMinCorner(1:2) <= tc.objective.groundPos) && all(candidateMaxCorner(1:2) >= tc.objective.groundPos) % reset to try again candidateMinCorner = [-Inf(1, 2), 0]; candidateMaxCorner = Inf(1, 3); else obstructs = false; end end if min(candidateMaxCorner - candidateMinCorner) >= tc.minObstacleDimension tooSmall = false; else candidateMinCorner = [-Inf(1, 2), 0]; candidateMaxCorner = Inf(1, 3); end end % Reduce infinite dimensions to the domain candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner)); candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner)); % Initialize obstacle geometry tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii)); end % Repeat this until a connected set of agent initial conditions % is found by random chance nIter = 0; connected = false; while ~connected % Randomly place agents in the domain for ii = 1:size(tc.agents, 1) posInvalid = true; while posInvalid % Initialize the agent into a random spot in the % domain (that is not too close to the sensing % objective) boringInit = true; while boringInit candidatePos = tc.domain.random(); if norm(candidatePos(1:2) - tc.objective.groundPos) >= norm(tc.domain.footprint(4, :) - tc.domain.footprint(1, :))/2 boringInit = false; end end candidateGeometry = rectangularPrism; tc.agents{ii} = tc.agents{ii}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii)); % Check obstacles to confirm that none are violated for jj = 1:size(tc.obstacles, 1) inside = false; if tc.obstacles{jj, 1}.contains(tc.agents{ii, 1}.pos) % Found a violation, stop checking inside = true; break; end end % Agent is inside obstacle, try again if inside continue; end % Create a collision geometry for this agent candidateGeometry = rectangularPrism; candidateGeometry = candidateGeometry.initialize([tc.agents{ii}.pos - 0.1 * ones(1, 3); tc.agents{ii}.pos + 0.1 * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)); % Check previously placed agents for collisions for jj = 1:(ii - 1) % Check if previously defined agents collide with % this one colliding = false; if candidateGeometry.contains(tc.agents{jj, 1}.pos) % Found a violation, stop checking colliding = true; break; end end % Agent is colliding with another, try again if ii ~= 1 && colliding continue; end % Allow to proceed since no obstacle/collision % violations were found posInvalid = false; end end % Collect all agent positions posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false); posArray = reshape([posArray{:}], size(tc.agents, 1), 3); % Communications checks adjacency = false(size(tc.agents, 1), size(tc.agents, 1)); for ii = 1:size(tc.agents, 1) % Compute distance from each to all agents for jj = 1:(size(tc.agents, 1)) if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange adjacency(ii, jj) = true; end end end % Check connectivity G = graph(adjacency); connected = all(conncomp(G) == 1); nIter = nIter + 1; end % Initialize the simulation tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.obstacles); % Plot domain f = tc.testClass.domain.plotWireframe; % Set plotting limits to focus on the domain xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]); ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]); zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]); % Plot obstacles for ii = 1:size(tc.testClass.obstacles, 1) tc.testClass.obstacles{ii, 1}.plotWireframe(f); end % Plot objective gradient f = tc.testClass.objective.plot(f); % Plot agents and their collision geometries for ii = 1:size(tc.testClass.agents, 1) f = tc.testClass.agents{ii, 1}.plot(f); f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f); end end end end