201 lines
9.2 KiB
Matlab
201 lines
9.2 KiB
Matlab
classdef test_miSim < matlab.unittest.TestCase
|
|
properties (Access = private)
|
|
testClass = miSim;
|
|
% Domain
|
|
domain = rectangularPrismConstraint;
|
|
|
|
% Obstacles
|
|
constraintGeometries = cell(1, 0);
|
|
|
|
% Objective
|
|
objective = sensingObjective;
|
|
objectiveFunction = @(x, y) 0;
|
|
objectiveDiscretizationStep = 0.01;
|
|
|
|
% Agents
|
|
minAgents = 3;
|
|
maxAgents = 9;
|
|
agents = cell(1, 0);
|
|
|
|
% Collision
|
|
minCollisionRange = 0.1;
|
|
maxCollisionRange = 0.5;
|
|
collisionRanges = NaN;
|
|
|
|
% Communications
|
|
comRange = 5;
|
|
end
|
|
|
|
% Setup for each test
|
|
methods (TestMethodSetup)
|
|
% Generate a random domain
|
|
function tc = setDomain(tc)
|
|
% random integer-sized domain within [-10, 10] in all dimensions
|
|
tc.domain = tc.domain.initialize(ceil([rand * -10, rand * 10; rand * -10, rand * 10; rand * -10, rand * 10]), REGION_TYPE.DOMAIN, "Domain");
|
|
end
|
|
% Generate a random sensing objective within that domain
|
|
function tc = setSensingObjective(tc)
|
|
mu = tc.domain.random();
|
|
sig = [3, 1; 1, 4];
|
|
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1, 1:2), sig);
|
|
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3, 1), tc.objectiveDiscretizationStep);
|
|
end
|
|
% Instantiate agents, they will be initialized under different
|
|
% parameters in individual test cases
|
|
function tc = setAgents(tc)
|
|
for ii = 1:randi([tc.minAgents, tc.maxAgents])
|
|
tc.agents{ii, 1} = agent;
|
|
end
|
|
tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange);
|
|
end
|
|
end
|
|
|
|
methods (Test)
|
|
% Test methods
|
|
function misim_initialization(tc)
|
|
% randomly create 2-3 constraint geometries
|
|
nGeom = 1 + randi(2);
|
|
tc.constraintGeometries = cell(nGeom, 1);
|
|
for ii = 1:size(tc.constraintGeometries, 1)
|
|
% Instantiate a rectangular prism constraint that spans the
|
|
% domain's height
|
|
tc.constraintGeometries{ii, 1} = rectangularPrismConstraint;
|
|
|
|
% Randomly come up with constraint geometries until they
|
|
% fit within the domain
|
|
candidateMinCorner = -Inf(3, 1);
|
|
candidateMaxCorner = Inf(3, 1);
|
|
|
|
% make sure the obstacles don't contain the sensing objective
|
|
obstructs = true;
|
|
while obstructs
|
|
|
|
% Make sure the obstacle is in the domain
|
|
while any(candidateMinCorner(1:2, 1) < tc.domain.minCorner(1:2, 1))
|
|
candidateMinCorner = tc.domain.minCorner(1:3, 1) + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1); -Inf]; % random spots on the ground
|
|
end
|
|
while any(candidateMaxCorner(1:2, 1) > tc.domain.maxCorner(1:2, 1))
|
|
candidateMaxCorner = [candidateMinCorner(1:2, 1); 0] + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1) ./ 2; Inf]; % halved to keep from being excessively large
|
|
end
|
|
|
|
% once a domain-valid obstacle has been found, make
|
|
% sure it doesn't obstruct the sensing target
|
|
if all(candidateMinCorner(1:2, 1)' <= tc.objective.groundPos) && all(candidateMaxCorner(1:2, 1)' >= tc.objective.groundPos)
|
|
% reset to try again
|
|
candidateMinCorner = -Inf(3, 1);
|
|
candidateMaxCorner = Inf(3, 1);
|
|
else
|
|
obstructs = false;
|
|
end
|
|
end
|
|
|
|
% Reduce infinite dimensions to the domain
|
|
candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner));
|
|
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
|
|
|
|
% Initialize constraint geometry
|
|
tc.constraintGeometries{ii, 1} = tc.constraintGeometries{ii, 1}.initialize([candidateMinCorner, candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
|
end
|
|
|
|
% Repeat this until a connected set of agent initial conditions
|
|
% is found by random chance
|
|
connected = false;
|
|
while ~connected
|
|
% Randomly place agents in the domain
|
|
for ii = 1:size(tc.agents, 1)
|
|
posInvalid = true;
|
|
while posInvalid
|
|
% Initialize the agent into a random spot in the domain
|
|
candidatePos = tc.domain.random();
|
|
candidateGeometry = rectangularPrismConstraint;
|
|
tc.agents{ii, 1} = tc.agents{ii, 1}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii, 1) * ones(1, 3); candidatePos + tc.collisionRanges(ii, 1) * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
|
|
|
|
% Check obstacles to confirm that none are violated
|
|
for jj = 1:size(tc.constraintGeometries, 1)
|
|
inside = false;
|
|
if tc.constraintGeometries{jj, 1}.contains(tc.agents{ii, 1}.pos)
|
|
% Found a violation, stop checking
|
|
inside = true;
|
|
break;
|
|
end
|
|
end
|
|
|
|
% Agent is inside obstacle, try again
|
|
if inside
|
|
continue;
|
|
end
|
|
|
|
% Create a collision geometry for this agent
|
|
candidateGeometry = rectangularPrismConstraint;
|
|
candidateGeometry = candidateGeometry.initialize([tc.agents{ii, 1}.pos - 0.1 * ones(1, 3); tc.agents{ii, 1}.pos + 0.1 * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
|
|
|
% Check previously placed agents for collisions
|
|
for jj = 1:(ii - 1)
|
|
% Check if previously defined agents collide with
|
|
% this one
|
|
colliding = false;
|
|
if candidateGeometry.contains(tc.agents{jj, 1}.pos)
|
|
% Found a violation, stop checking
|
|
colliding = true;
|
|
break;
|
|
end
|
|
end
|
|
|
|
% Agent is colliding with another, try again
|
|
if ii ~= 1 && colliding
|
|
continue;
|
|
end
|
|
|
|
% Allow to proceed since no obstacle/collision
|
|
% violations were found
|
|
posInvalid = false;
|
|
end
|
|
end
|
|
|
|
% Collect all agent positions
|
|
posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false);
|
|
posArray = reshape([posArray{:}], size(tc.agents, 1), 3);
|
|
|
|
% Communications checks
|
|
adjacency = false(size(tc.agents, 1), size(tc.agents, 1));
|
|
for ii = 1:size(tc.agents, 1)
|
|
% Compute distance from each to all agents
|
|
for jj = 1:(size(tc.agents, 1))
|
|
if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange
|
|
adjacency(ii, jj) = true;
|
|
end
|
|
end
|
|
end
|
|
|
|
% Check connectivity
|
|
G = graph(adjacency);
|
|
connected = all(conncomp(G) == 1);
|
|
end
|
|
|
|
% Initialize the simulation
|
|
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.constraintGeometries);
|
|
|
|
% Plot domain
|
|
f = tc.testClass.domain.plotWireframe;
|
|
|
|
% Set plotting limits to focus on the domain
|
|
xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]);
|
|
ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]);
|
|
zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]);
|
|
|
|
% Plot constraint geometries
|
|
for ii = 1:size(tc.testClass.constraintGeometries, 1)
|
|
tc.testClass.constraintGeometries{ii, 1}.plotWireframe(f);
|
|
end
|
|
|
|
% Plot objective gradient
|
|
f = tc.testClass.objective.plot(f);
|
|
|
|
% Plot agents and their collision geometries
|
|
for ii = 1:size(tc.testClass.agents, 1)
|
|
f = tc.testClass.agents{ii, 1}.plot(f);
|
|
f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f);
|
|
end
|
|
end
|
|
end
|
|
end |