Files
miSim/@miSim/partition.m

36 lines
1.7 KiB
Matlab

function obj = partition(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% Assess sensing performance of each agent at each sample point
% in the domain
agentPerformances = cellfun(@(x) reshape(x.sensorModel.sensorPerformance(x.pos, x.pan, x.tilt, [obj.objective.X(:), obj.objective.Y(:), zeros(size(obj.objective.X(:)))]), size(obj.objective.X)), obj.agents, 'UniformOutput', false);
agentPerformances{end + 1} = obj.sensorPerformanceMinimum * ones(size(agentPerformances{end})); % add additional layer to represent the threshold that has to be cleared for assignment to any partiton
agentPerformances = cat(3, agentPerformances{:});
% Get highest performance value at each point
[~, idx] = max(agentPerformances, [], 3);
% Collect agent indices in the same way as performance
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
agentInds = cat(3, agentInds{:});
% Get highest performing agent's index
[m,n,~] = size(agentInds);
[i,j] = ndgrid(1:m, 1:n);
obj.partitioning = agentInds(sub2ind(size(agentInds), i, j, idx));
% Get individual agent sensor performance
for ii = 1:size(obj.agents, 1)
obj.agents{ii}.performance = sum(agentPerformances(sub2ind(size(agentInds), i, j, idx)), 'all');
end
% Current total performance
sum(arrayfun(@(x) x.performance, [obj.agents{:}]))
obj.performance = sum(max(agentPerformances(:, :, 1:(end - 1)), [], 3), 'all'); % do not count final "non-assignment" layer in computing cumulative performance
end