gradient ascent fix
This commit is contained in:
@@ -30,7 +30,7 @@ function obj = run(obj, domain, partitioning, timestepIndex, index, agents)
|
||||
% Compute performance values on partition
|
||||
if ii < 5
|
||||
% Compute sensing performance
|
||||
sensorValues = obj.sensorModel.sensorPerformance(obj.pos, obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
sensorValues = obj.sensorModel.sensorPerformance(pos, obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
% Objective performance does not change for 0, +/- X, Y steps.
|
||||
% Those values are computed once before the loop and are only
|
||||
% recomputed when +/- Z steps are applied
|
||||
|
||||
@@ -31,8 +31,8 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
objective = sensingObjective;
|
||||
|
||||
% Agents
|
||||
minAgents = 4; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 6; % Maximum number of agents to be randomly generated
|
||||
minAgents = 2; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 2; % Maximum number of agents to be randomly generated
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
agents = cell(0, 1);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user