Compare commits
33 Commits
b82c87520a
...
sensor-mod
| Author | SHA1 | Date | |
|---|---|---|---|
| a2eb95381d | |||
| 3d35179579 | |||
| 9e948072e8 | |||
| 74088a13f3 | |||
| 8b14bfc5ce | |||
| c7510812cb | |||
| b63bbadfb4 | |||
| f50beeab5b | |||
| d36d2cab3e | |||
| 2b58646aca | |||
| 0621e0a07a | |||
| 7fb9d13781 | |||
| faa8bad596 | |||
| 8955d4d29b | |||
| f953cd3882 | |||
| b2787e1e53 | |||
| 8af5e87272 | |||
| d0a060f404 | |||
| 2f0647caf3 | |||
| 5a9ac0c2d5 | |||
| c61d627f0d | |||
| da3f732250 | |||
| 7fff074a5c | |||
| 66a5dfe1e6 | |||
| c5a7634d37 | |||
| bbefb6111b | |||
| ade795b3ae | |||
| db0ce2d42d | |||
| 5c6eeed6fd | |||
| f8a36eec4b | |||
| 22fab26485 | |||
| c64fc3eae5 | |||
| fdbd90afdf |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -38,3 +38,6 @@ codegen/
|
||||
# SimBiology backup files
|
||||
*.sbproj.backup
|
||||
*.sbproj.bak
|
||||
|
||||
# Sandbox contents
|
||||
sandbox/*
|
||||
130
agent.m
130
agent.m
@@ -5,25 +5,44 @@ classdef agent
|
||||
label = "";
|
||||
|
||||
% Sensor
|
||||
sensingFunction = @(r) 0.5; % probability of detection as a function of range
|
||||
sensorModel;
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
|
||||
% Guidance
|
||||
guidanceModel;
|
||||
|
||||
% State
|
||||
pos = NaN(1, 3);
|
||||
vel = NaN(1, 3);
|
||||
cBfromC = NaN(3); % DCM body from sim cartesian (assume fixed for now)
|
||||
lastPos = NaN(1, 3); % position from previous timestep
|
||||
pos = NaN(1, 3); % current position
|
||||
vel = NaN(1, 3); % current velocity
|
||||
pan = NaN; % pan angle
|
||||
tilt = NaN; % tilt angle
|
||||
|
||||
% Collision
|
||||
collisionGeometry;
|
||||
|
||||
% FOV cone
|
||||
fovGeometry;
|
||||
|
||||
% Communication
|
||||
comRange = NaN;
|
||||
|
||||
% Plotting
|
||||
scatterPoints;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, pos, vel, cBfromC, collisionGeometry, index, label)
|
||||
function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
pos (1, 3) double;
|
||||
vel (1, 3) double;
|
||||
cBfromC (3, 3) double {mustBeDcm};
|
||||
pan (1, 1) double;
|
||||
tilt (1, 1) double;
|
||||
collisionGeometry (1, 1) {mustBeGeometry};
|
||||
sensorModel (1, 1) {mustBeSensor}
|
||||
guidanceModel (1, 1) {mustBeA(guidanceModel, 'function_handle')};
|
||||
comRange (1, 1) double = NaN;
|
||||
index (1, 1) double = NaN;
|
||||
label (1, 1) string = "";
|
||||
end
|
||||
@@ -33,17 +52,90 @@ classdef agent
|
||||
|
||||
obj.pos = pos;
|
||||
obj.vel = vel;
|
||||
obj.cBfromC = cBfromC;
|
||||
obj.pan = pan;
|
||||
obj.tilt = tilt;
|
||||
obj.collisionGeometry = collisionGeometry;
|
||||
obj.sensorModel = sensorModel;
|
||||
obj.guidanceModel = guidanceModel;
|
||||
obj.comRange = comRange;
|
||||
obj.index = index;
|
||||
obj.label = label;
|
||||
|
||||
% Initialize FOV cone
|
||||
obj.fovGeometry = cone;
|
||||
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], obj.sensorModel.r, obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
|
||||
end
|
||||
function f = plot(obj, f)
|
||||
function obj = run(obj, sensingObjective, domain, partitioning)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
partitioning (:, :) double;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
end
|
||||
|
||||
% Do sensing
|
||||
[sensedValues, sensedPositions] = obj.sensorModel.sense(obj, sensingObjective, domain, partitioning);
|
||||
|
||||
% Determine next planned position
|
||||
nextPos = obj.guidanceModel(sensedValues, sensedPositions, obj.pos);
|
||||
|
||||
% Move to next position
|
||||
% (dynamics not modeled at this time)
|
||||
obj.lastPos = obj.pos;
|
||||
obj.pos = nextPos;
|
||||
|
||||
% Calculate movement
|
||||
d = obj.pos - obj.collisionGeometry.center;
|
||||
|
||||
% Reinitialize collision geometry in the new position
|
||||
obj.collisionGeometry = obj.collisionGeometry.initialize([obj.collisionGeometry.minCorner; obj.collisionGeometry.maxCorner] + d, obj.collisionGeometry.tag, obj.collisionGeometry.label);
|
||||
end
|
||||
function updatePlots(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
end
|
||||
arguments (Output)
|
||||
end
|
||||
|
||||
% Scatterplot point positions
|
||||
for ii = 1:size(obj.scatterPoints, 1)
|
||||
obj.scatterPoints(ii).XData = obj.pos(1);
|
||||
obj.scatterPoints(ii).YData = obj.pos(2);
|
||||
obj.scatterPoints(ii).ZData = obj.pos(3);
|
||||
end
|
||||
|
||||
% Find change in agent position since last timestep
|
||||
deltaPos = obj.pos - obj.lastPos;
|
||||
|
||||
% Collision geometry edges
|
||||
for jj = 1:size(obj.collisionGeometry.lines, 2)
|
||||
% Update plotting
|
||||
for ii = 1:size(obj.collisionGeometry.lines(:, jj), 1)
|
||||
obj.collisionGeometry.lines(ii, jj).XData = obj.collisionGeometry.lines(ii, jj).XData + deltaPos(1);
|
||||
obj.collisionGeometry.lines(ii, jj).YData = obj.collisionGeometry.lines(ii, jj).YData + deltaPos(2);
|
||||
obj.collisionGeometry.lines(ii, jj).ZData = obj.collisionGeometry.lines(ii, jj).ZData + deltaPos(3);
|
||||
end
|
||||
end
|
||||
|
||||
% Update FOV geometry surfaces
|
||||
for jj = 1:size(obj.fovGeometry.surface, 2)
|
||||
% Update each plot
|
||||
obj.fovGeometry.surface(jj).XData = obj.fovGeometry.surface(jj).XData + deltaPos(1);
|
||||
obj.fovGeometry.surface(jj).YData = obj.fovGeometry.surface(jj).YData + deltaPos(2);
|
||||
obj.fovGeometry.surface(jj).ZData = obj.fovGeometry.surface(jj).ZData + deltaPos(3);
|
||||
end
|
||||
end
|
||||
function [obj, f] = plot(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
@@ -51,9 +143,25 @@ classdef agent
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Plot points representing the agent position
|
||||
hold(f.CurrentAxes, "on");
|
||||
scatter3(obj.pos(1), obj.pos(2), obj.pos(3), 'filled', 'ko', 'SizeData', 50);
|
||||
hold(f.CurrentAxes, "off");
|
||||
hold(f.Children(1).Children(end), "on");
|
||||
o = scatter3(f.Children(1).Children(end), obj.pos(1), obj.pos(2), obj.pos(3), 'filled', 'ko', 'SizeData', 25);
|
||||
hold(f.Children(1).Children(end), "off");
|
||||
|
||||
% Check if this is a tiled layout figure
|
||||
if strcmp(f.Children(1).Type, 'tiledlayout')
|
||||
% Add to other perspectives
|
||||
o = [o; copyobj(o(1), f.Children(1).Children(2))];
|
||||
o = [o; copyobj(o(1), f.Children(1).Children(3))];
|
||||
o = [o; copyobj(o(1), f.Children(1).Children(4))];
|
||||
end
|
||||
|
||||
obj.scatterPoints = o;
|
||||
|
||||
% Plot collision geometry
|
||||
[obj.collisionGeometry, f] = obj.collisionGeometry.plotWireframe(ind, f);
|
||||
|
||||
% Plot FOV geometry
|
||||
[obj.fovGeometry, f] = obj.fovGeometry.plot(ind, f);
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -1,8 +1,78 @@
|
||||
function f = firstPlotSetup(f)
|
||||
arguments (Input)
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
if isempty(f.CurrentAxes)
|
||||
axes(f);
|
||||
axis(f.CurrentAxes, "equal");
|
||||
grid(f.CurrentAxes, "on");
|
||||
view(f.CurrentAxes, 3);
|
||||
tiledlayout(f, 5, 5, "TileSpacing", "tight", "Padding", "compact");
|
||||
|
||||
% 3D view
|
||||
nexttile(1, [4, 5]);
|
||||
axes(f.Children(1).Children(1));
|
||||
axis(f.Children(1).Children(1), "image");
|
||||
grid(f.Children(1).Children(1), "on");
|
||||
view(f.Children(1).Children(1), 3);
|
||||
xlabel(f.Children(1).Children(1), "X"); ylabel(f.Children(1).Children(1), "Y"); zlabel(f.Children(1).Children(1), "Z");
|
||||
title(f.Children(1).Children(1), "3D View");
|
||||
|
||||
% Communications graph
|
||||
nexttile(21, [1, 1]);
|
||||
axes(f.Children(1).Children(1));
|
||||
axis(f.Children(1).Children(1), "image");
|
||||
grid(f.Children(1).Children(1), "off");
|
||||
view(f.Children(1).Children(1), 0, 90);
|
||||
title(f.Children(1).Children(1), "Network Graph");
|
||||
set(f.Children(1).Children(1), 'XTickLabelMode', 'manual');
|
||||
set(f.Children(1).Children(1), 'YTickLabelMode', 'manual');
|
||||
set(f.Children(1).Children(1), 'XTickLabel', {});
|
||||
set(f.Children(1).Children(1), 'YTickLabel', {});
|
||||
set(f.Children(1).Children(1), 'XTick', []);
|
||||
set(f.Children(1).Children(1), 'YTick', []);
|
||||
set(f.Children(1).Children(1), 'XColor', 'none');
|
||||
set(f.Children(1).Children(1), 'YColor', 'none');
|
||||
|
||||
% Top-down view
|
||||
nexttile(22, [1, 1]);
|
||||
axes(f.Children(1).Children(1));
|
||||
axis(f.Children(1).Children(1), "image");
|
||||
grid(f.Children(1).Children(1), "on");
|
||||
view(f.Children(1).Children(1), 0, 90);
|
||||
xlabel(f.Children(1).Children(1), "X"); ylabel(f.Children(1).Children(1), "Y");
|
||||
title(f.Children(1).Children(1), "Top-down View");
|
||||
|
||||
% Side-on view
|
||||
nexttile(23, [1, 1]);
|
||||
axes(f.Children(1).Children(1));
|
||||
axis(f.Children(1).Children(1), "image");
|
||||
grid(f.Children(1).Children(1), "on");
|
||||
view(f.Children(1).Children(1), 90, 0);
|
||||
ylabel(f.Children(1).Children(1), "Y"); zlabel(f.Children(1).Children(1), "Z");
|
||||
title(f.Children(1).Children(1), "Side-on View");
|
||||
|
||||
% Front-on view
|
||||
nexttile(24, [1, 1]);
|
||||
axes(f.Children(1).Children(1));
|
||||
axis(f.Children(1).Children(1), "image");
|
||||
grid(f.Children(1).Children(1), "on");
|
||||
view(f.Children(1).Children(1), 0, 0);
|
||||
xlabel(f.Children(1).Children(1), "X"); zlabel(f.Children(1).Children(1), "Z");
|
||||
title(f.Children(1).Children(1), "Front-on View");
|
||||
|
||||
% Partitioning
|
||||
nexttile(25, [1, 1]);
|
||||
axes(f.Children(1).Children(1));
|
||||
axis(f.Children(1).Children(1), "image");
|
||||
grid(f.Children(1).Children(1), "on");
|
||||
view(f.Children(1).Children(1), 0, 90);
|
||||
xlabel(f.Children(1).Children(1), "X"); ylabel(f.Children(1).Children(1), "Y");
|
||||
title(f.Children(1).Children(1), "Domain Partitioning");
|
||||
set(f.Children(1).Children(1), 'XTickLabelMode', 'manual');
|
||||
set(f.Children(1).Children(1), 'YTickLabelMode', 'manual');
|
||||
set(f.Children(1).Children(1), 'XTickLabel', {});
|
||||
set(f.Children(1).Children(1), 'YTickLabel', {});
|
||||
set(f.Children(1).Children(1), 'XTick', []);
|
||||
set(f.Children(1).Children(1), 'YTick', []);
|
||||
end
|
||||
end
|
||||
@@ -8,6 +8,7 @@ classdef REGION_TYPE
|
||||
DOMAIN (1, [0, 0, 0]); % domain region
|
||||
OBSTACLE (2, [255, 127, 127]); % obstacle region
|
||||
COLLISION (3, [255, 255, 128]); % collision avoidance region
|
||||
FOV (4, [255, 165, 0]); % field of view region
|
||||
end
|
||||
methods
|
||||
function obj = REGION_TYPE(id, color)
|
||||
|
||||
82
geometries/cone.m
Normal file
82
geometries/cone.m
Normal file
@@ -0,0 +1,82 @@
|
||||
classdef cone
|
||||
% Conical geometry
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
% Meta
|
||||
tag = REGION_TYPE.INVALID;
|
||||
label = "";
|
||||
|
||||
% Spatial
|
||||
center = NaN;
|
||||
radius = NaN;
|
||||
height = NaN;
|
||||
|
||||
% Plotting
|
||||
surface;
|
||||
n = 32;
|
||||
end
|
||||
|
||||
methods
|
||||
function obj = initialize(obj, center, radius, height, tag, label)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'cone')};
|
||||
center (1, 3) double;
|
||||
radius (1, 1) double;
|
||||
height (1, 1) double;
|
||||
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
|
||||
label (1, 1) string = "";
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'cone')};
|
||||
end
|
||||
|
||||
obj.center = center;
|
||||
obj.radius = radius;
|
||||
obj.height = height;
|
||||
obj.tag = tag;
|
||||
obj.label = label;
|
||||
end
|
||||
function [obj, f] = plot(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'cone')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'cone')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Plot cone
|
||||
[X, Y, Z] = cylinder([obj.radius, 0], obj.n);
|
||||
|
||||
% Scale to match height
|
||||
Z = Z * obj.height;
|
||||
|
||||
% Move to center location
|
||||
X = X + obj.center(1);
|
||||
Y = Y + obj.center(2);
|
||||
Z = Z + obj.center(3);
|
||||
|
||||
% Plot
|
||||
if isnan(ind)
|
||||
o = surf(f.CurrentAxes, X, Y, Z);
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = surf(f.Children(1).Children(ind(1)), X, Y, Z, ones([size(Z), 1]) .* reshape(obj.tag.color, 1, 1, 3), 'FaceAlpha', 0.25, 'EdgeColor', 'none');
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
end
|
||||
|
||||
% Copy to other requested tiles
|
||||
if numel(ind) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
||||
end
|
||||
end
|
||||
|
||||
obj.surface = o;
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -1,19 +1,25 @@
|
||||
classdef rectangularPrism
|
||||
% Rectangular prism geometry
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
% Meta
|
||||
tag = REGION_TYPE.INVALID;
|
||||
label = "";
|
||||
|
||||
% Spatial
|
||||
minCorner = NaN(1, 3);
|
||||
maxCorner = NaN(1, 3);
|
||||
|
||||
dimensions = NaN(1, 3);
|
||||
|
||||
center = NaN;
|
||||
|
||||
vertices = NaN(8, 3);
|
||||
|
||||
footprint = NaN(4, 2);
|
||||
|
||||
% Graph
|
||||
vertices = NaN(8, 3);
|
||||
edges = [1 2; 2 3; 3 4; 4 1; % bottom square
|
||||
5 6; 6 8; 8 7; 7 5; % top square
|
||||
1 5; 2 6; 3 8; 4 7]; % vertical edges
|
||||
|
||||
% Plotting
|
||||
lines;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
@@ -74,6 +80,8 @@ classdef rectangularPrism
|
||||
arguments (Output)
|
||||
d (:, 1) double
|
||||
end
|
||||
assert(~obj.contains(pos), "Cannot determine distance for a point inside of the geometry");
|
||||
|
||||
cPos = NaN(1, 3);
|
||||
for ii = 1:3
|
||||
if pos(ii) < obj.minCorner(ii)
|
||||
@@ -94,6 +102,8 @@ classdef rectangularPrism
|
||||
arguments (Output)
|
||||
d (:, 1) double
|
||||
end
|
||||
assert(obj.contains(pos), "Cannot determine interior distance for a point outside of the geometry");
|
||||
|
||||
% find minimum distance to any face
|
||||
d = min([pos(1) - obj.minCorner(1), ...
|
||||
pos(2) - obj.minCorner(2), ...
|
||||
@@ -112,31 +122,83 @@ classdef rectangularPrism
|
||||
end
|
||||
c = all(pos >= repmat(obj.minCorner, size(pos, 1), 1), 2) & all(pos <= repmat(obj.maxCorner, size(pos, 1), 1), 2);
|
||||
end
|
||||
function f = plotWireframe(obj, f)
|
||||
function c = containsLine(obj, pos1, pos2)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
pos1 (1, 3) double;
|
||||
pos2 (1, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
c (1, 1) logical
|
||||
end
|
||||
|
||||
d = pos2 - pos1;
|
||||
|
||||
% edge case where the line is parallel to the geometry
|
||||
if abs(d) < 1e-12
|
||||
% check if it happens to start or end inside or outside of
|
||||
% the geometry
|
||||
if obj.contains(pos1) || obj.contains(pos2)
|
||||
c = true;
|
||||
else
|
||||
c = false;
|
||||
end
|
||||
return;
|
||||
end
|
||||
|
||||
tmin = -inf;
|
||||
tmax = inf;
|
||||
|
||||
% Standard case
|
||||
for ii = 1:3
|
||||
t1 = (obj.minCorner(ii) - pos1(ii)) / d(ii);
|
||||
t2 = (obj.maxCorner(ii) - pos2(ii)) / d(ii);
|
||||
tmin = max(tmin, min(t1, t2));
|
||||
tmax = min(tmax, max(t1, t2));
|
||||
if tmin > tmax
|
||||
c = false;
|
||||
return;
|
||||
end
|
||||
end
|
||||
|
||||
c = (tmax >= 0) && (tmin <= 1);
|
||||
end
|
||||
function [obj, f] = plotWireframe(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
edges = [1 2; 2 3; 3 4; 4 1; % bottom square
|
||||
5 6; 6 8; 8 7; 7 5; % top square
|
||||
1 5; 2 6; 3 8; 4 7]; % vertical edges
|
||||
|
||||
% Create plotting inputs from vertices and edges
|
||||
X = [obj.vertices(edges(:,1),1), obj.vertices(edges(:,2),1)]';
|
||||
Y = [obj.vertices(edges(:,1),2), obj.vertices(edges(:,2),2)]';
|
||||
Z = [obj.vertices(edges(:,1),3), obj.vertices(edges(:,2),3)]';
|
||||
X = [obj.vertices(obj.edges(:,1),1), obj.vertices(obj.edges(:,2),1)]';
|
||||
Y = [obj.vertices(obj.edges(:,1),2), obj.vertices(obj.edges(:,2),2)]';
|
||||
Z = [obj.vertices(obj.edges(:,1),3), obj.vertices(obj.edges(:,2),3)]';
|
||||
|
||||
% Plot the boundaries of the geometry
|
||||
hold(f.CurrentAxes, "on");
|
||||
plot3(X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
|
||||
hold(f.CurrentAxes, "off");
|
||||
% Plot the boundaries of the geometry into 3D view
|
||||
if isnan(ind)
|
||||
o = plot3(f.CurrentAxes, X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
end
|
||||
|
||||
% Copy to other requested tiles
|
||||
if numel(ind) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
||||
end
|
||||
end
|
||||
|
||||
obj.lines = o;
|
||||
end
|
||||
end
|
||||
end
|
||||
26
guidanceModels/gradientAscent.m
Normal file
26
guidanceModels/gradientAscent.m
Normal file
@@ -0,0 +1,26 @@
|
||||
function nextPos = gradientAscent(sensedValues, sensedPositions, pos, rate)
|
||||
arguments (Input)
|
||||
sensedValues (:, 1) double;
|
||||
sensedPositions (:, 3) double;
|
||||
pos (1, 3) double;
|
||||
rate (1, 1) double = 0.1;
|
||||
end
|
||||
arguments (Output)
|
||||
nextPos(1, 3) double;
|
||||
end
|
||||
|
||||
% As a default, maintain current position
|
||||
if size(sensedValues, 1) == 0 && size(sensedPositions, 1) == 0
|
||||
nextPos = pos;
|
||||
return;
|
||||
end
|
||||
|
||||
% Select next position by maximum sensed value
|
||||
nextPos = sensedPositions(sensedValues == max(sensedValues), :);
|
||||
nextPos = [nextPos(1, 1:2), pos(3)]; % just in case two get selected, simply pick one
|
||||
|
||||
% rate-limit motion
|
||||
v = nextPos - pos;
|
||||
nextPos = pos + (v / norm(v, 2)) * rate;
|
||||
|
||||
end
|
||||
335
miSim.m
335
miSim.m
@@ -3,37 +3,352 @@ classdef miSim
|
||||
|
||||
% Simulation parameters
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
timestep = NaN; % delta time interval for simulation iterations
|
||||
partitioningFreq = NaN; % number of simulation timesteps at which the partitioning routine is re-run
|
||||
maxIter = NaN; % maximum number of simulation iterations
|
||||
domain = rectangularPrism;
|
||||
objective = sensingObjective;
|
||||
obstacles = cell(0, 1); % geometries that define obstacles within the domain
|
||||
agents = cell(0, 1); % agents that move within the domain
|
||||
adjacency = NaN; % Adjacency matrix representing communications network graph
|
||||
partitioning = NaN;
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
% Plot objects
|
||||
connectionsPlot; % objects for lines connecting agents in spatial plots
|
||||
graphPlot; % objects for abstract network graph plot
|
||||
partitionPlot; % objects for partition plot
|
||||
|
||||
% Indicies for various plot types in the main tiled layout figure
|
||||
spatialPlotIndices = [6, 4, 3, 2];
|
||||
objectivePlotIndices = [6, 4];
|
||||
networkGraphIndex = 5;
|
||||
partitionGraphIndex = 1;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, domain, objective, agents, obstacles)
|
||||
function [obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
agents (:, 1) cell {mustBeAgents};
|
||||
agents (:, 1) cell;
|
||||
timestep (:, 1) double = 0.05;
|
||||
partitoningFreq (:, 1) double = 0.25
|
||||
maxIter (:, 1) double = 1000;
|
||||
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Define simulation time parameters
|
||||
obj.timestep = timestep;
|
||||
obj.maxIter = maxIter;
|
||||
|
||||
% Define domain
|
||||
obj.domain = domain;
|
||||
obj.partitioningFreq = partitoningFreq;
|
||||
|
||||
% Add geometries representing obstacles within the domain
|
||||
obj.obstacles = obstacles;
|
||||
|
||||
% Define objective
|
||||
obj.objective = objective;
|
||||
|
||||
% Define agents
|
||||
obj.agents = agents;
|
||||
|
||||
% Compute adjacency matrix
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
% Create initial partitioning
|
||||
obj = obj.partition();
|
||||
|
||||
% Set up initial plot
|
||||
% Set up axes arrangement
|
||||
% Plot domain
|
||||
[obj.domain, f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
||||
|
||||
% Plot obstacles
|
||||
for ii = 1:size(obj.obstacles, 1)
|
||||
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, f);
|
||||
end
|
||||
|
||||
% Plot objective gradient
|
||||
f = obj.objective.plot(obj.objectivePlotIndices, f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
[obj.agents{ii}, f] = obj.agents{ii}.plot(obj.spatialPlotIndices, f);
|
||||
end
|
||||
|
||||
% Plot communication links
|
||||
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
||||
|
||||
% Plot abstract network graph
|
||||
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
||||
|
||||
% Plot domain partitioning
|
||||
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
||||
end
|
||||
function [obj, f] = run(obj, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Set up times to iterate over
|
||||
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
||||
partitioningTimes = times(obj.partitioningFreq:obj.partitioningFreq:size(times, 1));
|
||||
|
||||
% Start video writer
|
||||
v = setupVideoWriter(obj.timestep);
|
||||
v.open();
|
||||
|
||||
for ii = 1:size(times, 1)
|
||||
% Display current sim time
|
||||
t = times(ii);
|
||||
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
|
||||
|
||||
% Check if it's time for new partitions
|
||||
updatePartitions = false;
|
||||
if ismember(t, partitioningTimes)
|
||||
updatePartitions = true;
|
||||
obj = obj.partition();
|
||||
end
|
||||
|
||||
% Iterate over agents to simulate their motion
|
||||
for jj = 1:size(obj.agents, 1)
|
||||
obj.agents{jj} = obj.agents{jj}.run(obj.objective, obj.domain, obj.partitioning);
|
||||
end
|
||||
|
||||
% Update adjacency matrix
|
||||
obj = obj.updateAdjacency;
|
||||
|
||||
% Update plots
|
||||
[obj, f] = obj.updatePlots(f, updatePartitions);
|
||||
|
||||
% Write frame in to video
|
||||
I = getframe(f);
|
||||
v.writeVideo(I);
|
||||
end
|
||||
|
||||
% Close video file
|
||||
v.close();
|
||||
end
|
||||
function obj = partition(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
%% Define domain
|
||||
obj.domain = domain;
|
||||
% Assess sensing performance of each agent at each sample point
|
||||
% in the domain
|
||||
agentPerformances = cellfun(@(x) reshape(x.sensorModel.sensorPerformance(x.pos, x.pan, x.tilt, [obj.objective.X(:), obj.objective.Y(:), zeros(size(obj.objective.X(:)))]), size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
||||
agentPerformances = cat(3, agentPerformances{:});
|
||||
|
||||
%% Add geometries representing obstacles within the domain
|
||||
obj.obstacles = obstacles;
|
||||
% Get highest performance value at each point
|
||||
[~, idx] = max(agentPerformances, [], 3);
|
||||
|
||||
%% Define objective
|
||||
obj.objective = objective;
|
||||
% Collect agent indices in the same way
|
||||
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
||||
agentInds = cat(3, agentInds{:});
|
||||
|
||||
%% Define agents
|
||||
obj.agents = agents;
|
||||
% Get highest performing agent's index
|
||||
[m,n,~] = size(agentInds);
|
||||
[i,j] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), i, j, idx));
|
||||
end
|
||||
function [obj, f] = updatePlots(obj, f, updatePartitions)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
updatePartitions (1, 1) logical = false;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Update agent positions, collision geometries
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
obj.agents{ii}.updatePlots();
|
||||
end
|
||||
|
||||
% The remaining updates might be possible to do in a clever way
|
||||
% that moves existing lines instead of clearing and
|
||||
% re-plotting, which is much better for performance boost
|
||||
|
||||
% Update agent connections plot
|
||||
delete(obj.connectionsPlot);
|
||||
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
||||
|
||||
% Update network graph plot
|
||||
delete(obj.graphPlot);
|
||||
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
||||
|
||||
% Update partitioning plot
|
||||
if updatePartitions
|
||||
delete(obj.partitionPlot);
|
||||
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
||||
end
|
||||
|
||||
% reset plot limits to fit domain
|
||||
for ii = 1:size(obj.spatialPlotIndices, 2)
|
||||
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
end
|
||||
|
||||
drawnow;
|
||||
end
|
||||
function obj = updateAdjacency(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
% Initialize assuming only self-connections
|
||||
A = logical(eye(size(obj.agents, 1)));
|
||||
|
||||
% Check lower triangle off-diagonal connections
|
||||
for ii = 2:size(A, 1)
|
||||
for jj = 1:(ii - 1)
|
||||
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
|
||||
% Make sure that obstacles don't obstruct the line
|
||||
% of sight, breaking the connection
|
||||
for kk = 1:size(obj.obstacles, 1)
|
||||
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
|
||||
A(ii, jj) = true;
|
||||
end
|
||||
end
|
||||
% need extra handling for cases with no obstacles
|
||||
if isempty(obj.obstacles)
|
||||
A(ii, jj) = true;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
obj.adjacency = A | A';
|
||||
end
|
||||
function [obj, f] = plotConnections(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Iterate over lower triangle off-diagonal region of the
|
||||
% adjacency matrix to plot communications links between agents
|
||||
X = []; Y = []; Z = [];
|
||||
for ii = 2:size(obj.adjacency, 1)
|
||||
for jj = 1:(ii - 1)
|
||||
if obj.adjacency(ii, jj)
|
||||
X = [X; obj.agents{ii}.pos(1), obj.agents{jj}.pos(1)];
|
||||
Y = [Y; obj.agents{ii}.pos(2), obj.agents{jj}.pos(2)];
|
||||
Z = [Z; obj.agents{ii}.pos(3), obj.agents{jj}.pos(3)];
|
||||
end
|
||||
end
|
||||
end
|
||||
X = X'; Y = Y'; Z = Z';
|
||||
|
||||
% Plot the connections
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, "on");
|
||||
o = plot3(f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.CurrentAxes, "off");
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
end
|
||||
|
||||
% Copy to other plots
|
||||
if size(ind, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
||||
end
|
||||
end
|
||||
|
||||
obj.connectionsPlot = o;
|
||||
end
|
||||
function [obj, f] = plotPartitions(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, 'on');
|
||||
o = imagesc(f.CurrentAxes, obj.partitioning);
|
||||
hold(f.CurrentAxes, 'off');
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
o = imagesc(f.Children(1).Children(ind(1)), obj.partitioning);
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
if size(ind, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
||||
end
|
||||
end
|
||||
end
|
||||
obj.partitionPlot = o;
|
||||
|
||||
end
|
||||
function [obj, f] = plotGraph(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Form graph from adjacency matrix
|
||||
G = graph(obj.adjacency, 'omitselfloops');
|
||||
|
||||
% Plot graph object
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, 'on');
|
||||
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(f.CurrentAxes, 'off');
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), 'on');
|
||||
o = plot(f.Children(1).Children(ind(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
||||
hold(f.Children(1).Children(ind(1)), 'off');
|
||||
if size(ind, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o; copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
||||
end
|
||||
end
|
||||
end
|
||||
obj.graphPlot = o;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="sensingModels" Type="Relative"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="420d04e4-3880-4a45-8609-11cb30d87302" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="guidanceModels" Type="Relative"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="1d8d2b42-2863-4985-9cf2-980917971eba" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="sandbox" Type="Relative"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="ff13e617-a2ad-49b1-a9b5-668ac2cffc4a" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="validators/arguments" Type="Relative"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="b7c7eec5-a318-4c17-adb2-b13a21bf0609" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="1" type="DIR_SIGNIFIER"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="mustBeSensor.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="domainContainsObstacle.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="obstacleCoversObjective.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="arguments" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="obstacleCrowdsObjective.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="agentsCrowdObjective.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="cone.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="1" type="DIR_SIGNIFIER"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="setupVideoWriter.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sandbox" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sensingModels" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="guidanceModels" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sigmoidSensor.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="fixedCardinalSensor.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="1" type="DIR_SIGNIFIER"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="gradientAscent.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="1" type="DIR_SIGNIFIER"/>
|
||||
76
sensingModels/fixedCardinalSensor.m
Normal file
76
sensingModels/fixedCardinalSensor.m
Normal file
@@ -0,0 +1,76 @@
|
||||
classdef fixedCardinalSensor
|
||||
% Senses in the +/-x, +/- y directions at some specified fixed length
|
||||
properties
|
||||
r = 0.1; % fixed sensing length
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, r)
|
||||
arguments(Input)
|
||||
obj (1, 1) {mustBeA(obj, 'fixedCardinalSensor')};
|
||||
r (1, 1) double;
|
||||
end
|
||||
arguments(Output)
|
||||
obj (1, 1) {mustBeA(obj, 'fixedCardinalSensor')};
|
||||
end
|
||||
obj.r = r;
|
||||
end
|
||||
function [neighborValues, neighborPos] = sense(obj, agent, sensingObjective, domain, partitioning)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'fixedCardinalSensor')};
|
||||
agent (1, 1) {mustBeA(agent, 'agent')};
|
||||
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
partitioning (:, :) double = NaN;
|
||||
end
|
||||
arguments (Output)
|
||||
neighborValues (4, 1) double;
|
||||
neighborPos (4, 3) double;
|
||||
end
|
||||
|
||||
% Evaluate objective at position offsets +/-[r, 0, 0] and +/-[0, r, 0]
|
||||
currentPos = agent.pos(1:2);
|
||||
neighborPos = [currentPos(1) + obj.r, currentPos(2); ... % (+x)
|
||||
currentPos(1), currentPos(2) + obj.r; ... % (+y)
|
||||
currentPos(1) - obj.r, currentPos(2); ... % (-x)
|
||||
currentPos(1), currentPos(2) - obj.r; ... % (-y)
|
||||
];
|
||||
|
||||
% Check for neighbor positions that fall outside of the domain
|
||||
outOfBounds = false(size(neighborPos, 1), 1);
|
||||
for ii = 1:size(neighborPos, 1)
|
||||
if ~domain.contains([neighborPos(ii, :), 0])
|
||||
outOfBounds(ii) = true;
|
||||
end
|
||||
end
|
||||
|
||||
% Replace out of bounds positions with inoffensive in-bounds positions
|
||||
neighborPos(outOfBounds, 1:3) = repmat(agent.pos, sum(outOfBounds), 1);
|
||||
|
||||
% Sense values at selected positions
|
||||
neighborValues = [sensingObjective.objectiveFunction(neighborPos(1, 1), neighborPos(1, 2)), ... % (+x)
|
||||
sensingObjective.objectiveFunction(neighborPos(2, 1), neighborPos(2, 2)), ... % (+y)
|
||||
sensingObjective.objectiveFunction(neighborPos(3, 1), neighborPos(3, 2)), ... % (-x)
|
||||
sensingObjective.objectiveFunction(neighborPos(4, 1), neighborPos(4, 2)), ... % (-y)
|
||||
];
|
||||
|
||||
% Prevent out of bounds locations from ever possibly being selected
|
||||
neighborValues(outOfBounds) = 0;
|
||||
end
|
||||
function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'fixedCardinalSensor')};
|
||||
agentPos (1, 3) double;
|
||||
agentPan (1, 1) double;
|
||||
agentTilt (1, 1) double;
|
||||
targetPos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
value (:, 1) double;
|
||||
end
|
||||
|
||||
value = 0.5 * ones(size(targetPos, 1), 1);
|
||||
|
||||
end
|
||||
end
|
||||
end
|
||||
83
sensingModels/sigmoidSensor.m
Normal file
83
sensingModels/sigmoidSensor.m
Normal file
@@ -0,0 +1,83 @@
|
||||
classdef sigmoidSensor
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
% Sensor parameters
|
||||
alphaDist = NaN;
|
||||
betaDist = NaN;
|
||||
alphaPan = NaN;
|
||||
betaPan = NaN;
|
||||
alphaTilt = NaN;
|
||||
betaTilt = NaN;
|
||||
|
||||
r = NaN;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
function obj = initialize(obj, alphaDist, betaDist, alphaPan, betaPan, alphaTilt, betaTilt)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')}
|
||||
alphaDist (1, 1) double;
|
||||
betaDist (1, 1) double;
|
||||
alphaPan (1, 1) double;
|
||||
betaPan (1, 1) double;
|
||||
alphaTilt (1, 1) double;
|
||||
betaTilt (1, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')}
|
||||
end
|
||||
|
||||
obj.alphaDist = alphaDist;
|
||||
obj.betaDist = betaDist;
|
||||
obj.alphaPan = alphaPan;
|
||||
obj.betaPan = betaPan;
|
||||
obj.alphaTilt = alphaTilt;
|
||||
obj.betaTilt = betaTilt;
|
||||
|
||||
obj.r = obj.alphaDist;
|
||||
end
|
||||
function [values, positions] = sense(obj, agent, sensingObjective, domain, partitioning)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
agent (1, 1) {mustBeA(agent, 'agent')};
|
||||
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
partitioning (:, :) double;
|
||||
end
|
||||
arguments (Output)
|
||||
values (:, 1) double;
|
||||
positions (:, 3) double;
|
||||
end
|
||||
|
||||
% Find positions for this agent's assigned partition in the domain
|
||||
idx = partitioning == agent.index;
|
||||
positions = [sensingObjective.X(idx), sensingObjective.Y(idx), zeros(size(sensingObjective.X(idx)))];
|
||||
|
||||
% Evaluate objective function at every point in this agent's
|
||||
% assigned partiton
|
||||
values = sensingObjective.values(idx);
|
||||
end
|
||||
function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
agentPos (1, 3) double;
|
||||
agentPan (1, 1) double;
|
||||
agentTilt (1, 1) double;
|
||||
targetPos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
value (:, 1) double;
|
||||
end
|
||||
|
||||
d = vecnorm(agentPos - targetPos, 2, 2);
|
||||
panAngle = atan2(targetPos(:, 2) - agentPos(2), targetPos(:, 1) - agentPos(1)) - agentPan;
|
||||
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), d) - agentTilt;
|
||||
|
||||
% Membership functions
|
||||
mu_d = 1 - (1 ./ (1 + exp(-obj.betaDist .* (d - obj.alphaDist)))); % distance
|
||||
mu_p = (1 ./ (1 + exp(-obj.betaPan .* (panAngle + obj.alphaPan)))) - (1 ./ (1 + exp(-obj.betaPan .* (panAngle - obj.alphaPan)))); % pan
|
||||
mu_t = (1 ./ (1 + exp(-obj.betaPan .* (tiltAngle + obj.alphaPan)))) - (1 ./ (1 + exp(-obj.betaPan .* (tiltAngle - obj.alphaPan)))); % tilt
|
||||
|
||||
value = mu_d .* mu_p .* mu_t;
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -46,9 +46,10 @@ classdef sensingObjective
|
||||
idx = obj.values == max(obj.values, [], "all");
|
||||
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
||||
end
|
||||
function f = plot(obj, f)
|
||||
function f = plot(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1,1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
@@ -59,11 +60,27 @@ classdef sensingObjective
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Plot gradient on the "floor" of the domain
|
||||
if isnan(ind)
|
||||
hold(f.CurrentAxes, "on");
|
||||
s = surf(obj.X, obj.Y, repmat(obj.groundAlt, size(obj.X)), obj.values ./ max(obj.values, [], "all"), 'EdgeColor', 'none');
|
||||
s.HitTest = 'off';
|
||||
s.PickableParts = 'none';
|
||||
o = surf(f.CurrentAxes, obj.X, obj.Y, repmat(obj.groundAlt, size(obj.X)), obj.values ./ max(obj.values, [], "all"), 'EdgeColor', 'none');
|
||||
o.HitTest = 'off';
|
||||
o.PickableParts = 'none';
|
||||
hold(f.CurrentAxes, "off");
|
||||
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = surf(f.Children(1).Children(ind(1)), obj.X, obj.Y, repmat(obj.groundAlt, size(obj.X)), obj.values ./ max(obj.values, [], "all"), 'EdgeColor', 'none');
|
||||
o.HitTest = 'off';
|
||||
o.PickableParts = 'none';
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
end
|
||||
|
||||
% Add to other perspectives
|
||||
if size(ind, 2) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
copyobj(o, f.Children(1).Children(ind(ii)));
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
17
setupVideoWriter.m
Normal file
17
setupVideoWriter.m
Normal file
@@ -0,0 +1,17 @@
|
||||
function v = setupVideoWriter(timestep)
|
||||
arguments (Input)
|
||||
timestep (1, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
v (1, 1) {mustBeA(v, 'VideoWriter')};
|
||||
end
|
||||
|
||||
if ispc || ismac
|
||||
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'MPEG-4');
|
||||
elseif isunix
|
||||
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
|
||||
end
|
||||
|
||||
v.FrameRate = 1/timestep;
|
||||
v.Quality = 90;
|
||||
end
|
||||
497
test_miSim.m
497
test_miSim.m
@@ -1,61 +1,76 @@
|
||||
classdef test_miSim < matlab.unittest.TestCase
|
||||
properties (Access = private)
|
||||
testClass = miSim;
|
||||
|
||||
% Domain
|
||||
domain = rectangularPrism;
|
||||
domain = rectangularPrism; % domain geometry
|
||||
maxIter = 250;
|
||||
timestep = 0.05
|
||||
partitoningFreq = 5;
|
||||
|
||||
% Obstacles
|
||||
minNumObstacles = 1;
|
||||
maxNumObstacles = 3;
|
||||
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
|
||||
maxNumObstacles = 3; % Maximum number of obstacles to be randomly generated
|
||||
minObstacleSize = 1; % Minimum size of a randomly generated obstacle
|
||||
maxObstacleSize = 6; % Maximum size of a randomly generated obstacle
|
||||
obstacles = cell(1, 0);
|
||||
minObstacleDimension = 1;
|
||||
|
||||
% Objective
|
||||
objectiveDiscretizationStep = 0.01; % Step at which the objective function is solved in X and Y space
|
||||
protectedRange = 1; % Minimum distance between the sensing objective and the edge of the domain
|
||||
objective = sensingObjective;
|
||||
objectiveFunction = @(x, y) 0;
|
||||
objectiveDiscretizationStep = 0.01;
|
||||
protectedRange = 1;
|
||||
|
||||
% Agents
|
||||
minAgents = 3;
|
||||
maxAgents = 9;
|
||||
agents = cell(1, 0);
|
||||
minAgents = 3; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 9; % Maximum number of agents to be randomly generated
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
agents = cell(0, 1);
|
||||
|
||||
% Collision
|
||||
minCollisionRange = 0.1;
|
||||
maxCollisionRange = 0.5;
|
||||
minCollisionRange = 0.1; % Minimum randomly generated collision geometry size
|
||||
maxCollisionRange = 0.5; % Maximum randomly generated collision geometry size
|
||||
collisionRanges = NaN;
|
||||
|
||||
% Communications
|
||||
comRange = 5;
|
||||
comRange = 5; % Maximum range between agents that forms a communications link
|
||||
end
|
||||
|
||||
% Setup for each test
|
||||
methods (TestMethodSetup)
|
||||
% Generate a random domain
|
||||
function tc = setDomain(tc)
|
||||
% random integer-sized domain ranging from [0, 5] to [0, 25] in all dimensions
|
||||
% random integer-sized cube domain ranging from [0, 5 -> 25]
|
||||
% in all dimensions
|
||||
L = ceil(5 + rand * 10 + rand * 10);
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); L * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
end
|
||||
% Generate a random sensing objective within that domain
|
||||
function tc = setSensingObjective(tc)
|
||||
% Using a bivariate normal distribution
|
||||
% Set peak position (mean)
|
||||
mu = tc.domain.minCorner;
|
||||
while tc.domain.interiorDistance(mu) < tc.protectedRange
|
||||
mu = tc.domain.random();
|
||||
end
|
||||
mu(3) = 0;
|
||||
assert(tc.domain.contains(mu));
|
||||
|
||||
% Set standard deviations of bivariate distribution
|
||||
sig = [2 + rand * 2, 1; 1, 2 + rand * 2];
|
||||
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1:2), sig);
|
||||
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
|
||||
|
||||
% Define objective
|
||||
tc.objective = tc.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], mu(1:2), sig), tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
|
||||
end
|
||||
% Instantiate agents, they will be initialized under different
|
||||
% parameters in individual test cases
|
||||
% Instantiate agents
|
||||
function tc = setAgents(tc)
|
||||
% Agents will be initialized under different parameters in
|
||||
% individual test cases
|
||||
|
||||
% Instantiate a random number of agents according to parameters
|
||||
for ii = 1:randi([tc.minAgents, tc.maxAgents])
|
||||
tc.agents{ii, 1} = agent;
|
||||
end
|
||||
|
||||
% Define random collision ranges for each agent
|
||||
tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange);
|
||||
end
|
||||
end
|
||||
@@ -63,169 +78,371 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
methods (Test)
|
||||
% Test methods
|
||||
function misim_initialization(tc)
|
||||
% randomly create 2-3 obstacles
|
||||
% randomly create obstacles
|
||||
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
|
||||
tc.obstacles = cell(nGeom, 1);
|
||||
|
||||
% Iterate over obstacles to initialize
|
||||
for ii = 1:size(tc.obstacles, 1)
|
||||
badCandidate = true;
|
||||
while badCandidate
|
||||
% Instantiate a rectangular prism obstacle
|
||||
tc.obstacles{ii, 1} = rectangularPrism;
|
||||
tc.obstacles{ii} = rectangularPrism;
|
||||
|
||||
% Randomly come up with dimensions until they
|
||||
% fit within the domain
|
||||
candidateMinCorner = [-Inf(1, 2), 0];
|
||||
candidateMaxCorner = Inf(1, 3);
|
||||
% Randomly generate min corner for the obstacle
|
||||
candidateMinCorner = tc.domain.random();
|
||||
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
|
||||
|
||||
% make sure obstacles are not too small in any dimension
|
||||
tooSmall = true;
|
||||
while tooSmall
|
||||
% make sure the obstacles don't contain the sensing
|
||||
% objective or encroach on it too much
|
||||
obstructs = true;
|
||||
while obstructs
|
||||
% Randomly select a corresponding maximum corner that
|
||||
% satisfies min/max obstacle size specifications
|
||||
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
|
||||
|
||||
% Make sure the obstacle is in the domain
|
||||
while any(candidateMinCorner < tc.domain.minCorner)
|
||||
candidateMinCorner = tc.domain.minCorner(1:3) + [(tc.domain.maxCorner(1:2) - tc.domain.minCorner(1:2)) .* rand(1, 2), 0]; % random spots on the ground
|
||||
end
|
||||
while any(candidateMaxCorner > tc.domain.maxCorner)
|
||||
candidateMaxCorner = [candidateMinCorner(1:2), 0] + ((tc.domain.maxCorner(1:3) - tc.domain.minCorner(1:3)) .* rand(1, 3) ./ 2); % halved to keep from being excessively large
|
||||
end
|
||||
|
||||
% once a domain-valid obstacle has been found, make
|
||||
% sure it doesn't obstruct the sensing target
|
||||
if all(candidateMinCorner(1:2) <= tc.objective.groundPos) && all(candidateMaxCorner(1:2) >= tc.objective.groundPos)
|
||||
% reset to try again
|
||||
candidateMinCorner = [-Inf(1, 2), 0];
|
||||
candidateMaxCorner = Inf(1, 3);
|
||||
else
|
||||
obstructs = false;
|
||||
end
|
||||
end
|
||||
if min(candidateMaxCorner - candidateMinCorner) >= tc.minObstacleDimension
|
||||
tooSmall = false;
|
||||
else
|
||||
candidateMinCorner = [-Inf(1, 2), 0];
|
||||
candidateMaxCorner = Inf(1, 3);
|
||||
end
|
||||
end
|
||||
|
||||
% Reduce infinite dimensions to the domain
|
||||
candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner));
|
||||
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
|
||||
|
||||
% Initialize obstacle geometry
|
||||
% Initialize obstacle
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
||||
|
||||
% Check if the obstacle intersects with any existing
|
||||
% obstacles
|
||||
violation = false;
|
||||
for kk = 1:(ii - 1)
|
||||
if geometryIntersects(tc.obstacles{kk}, tc.obstacles{ii})
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Repeat this until a connected set of agent initial conditions
|
||||
% is found by random chance
|
||||
nIter = 0;
|
||||
connected = false;
|
||||
while ~connected
|
||||
% Randomly place agents in the domain
|
||||
% Make sure that the obstacles are fully contained by
|
||||
% the domain
|
||||
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles don't cover the sensing
|
||||
% objective
|
||||
if obstacleCoversObjective(tc.objective, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles aren't too close to the
|
||||
% sensing objective
|
||||
if obstacleCrowdsObjective(tc.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
continue;
|
||||
end
|
||||
|
||||
badCandidate = false;
|
||||
end
|
||||
end
|
||||
|
||||
% Add agents individually, ensuring that each addition does not
|
||||
% invalidate the initialization setup
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
posInvalid = true;
|
||||
while posInvalid
|
||||
% Initialize the agent into a random spot in the
|
||||
% domain (that is not too close to the sensing
|
||||
% objective)
|
||||
boringInit = true;
|
||||
while boringInit
|
||||
initInvalid = true;
|
||||
while initInvalid
|
||||
candidatePos = [tc.objective.groundPos, 0];
|
||||
% Generate a random position for the agent based on
|
||||
% existing agent positions
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
if norm(candidatePos(1:2) - tc.objective.groundPos) >= norm(tc.domain.footprint(4, :) - tc.domain.footprint(1, :))/2
|
||||
boringInit = false;
|
||||
end
|
||||
end
|
||||
candidateGeometry = rectangularPrism;
|
||||
tc.agents{ii} = tc.agents{ii}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Check obstacles to confirm that none are violated
|
||||
for jj = 1:size(tc.obstacles, 1)
|
||||
inside = false;
|
||||
if tc.obstacles{jj, 1}.contains(tc.agents{ii, 1}.pos)
|
||||
% Found a violation, stop checking
|
||||
inside = true;
|
||||
break;
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
end
|
||||
|
||||
% Agent is inside obstacle, try again
|
||||
if inside
|
||||
% Make sure that the candidate position is within the
|
||||
% domain
|
||||
if ~tc.domain.contains(candidatePos)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Create a collision geometry for this agent
|
||||
candidateGeometry = rectangularPrism;
|
||||
candidateGeometry = candidateGeometry.initialize([tc.agents{ii}.pos - 0.1 * ones(1, 3); tc.agents{ii}.pos + 0.1 * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
% Make sure that the candidate position does not crowd
|
||||
% the sensing objective and create boring scenarios
|
||||
if agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Check previously placed agents for collisions
|
||||
% Make sure that there exist unobstructed lines of sight at
|
||||
% appropriate ranges to form a connected communications
|
||||
% graph between the agents
|
||||
connections = false(1, ii - 1);
|
||||
for jj = 1:(ii - 1)
|
||||
% Check if previously defined agents collide with
|
||||
% this one
|
||||
colliding = false;
|
||||
if candidateGeometry.contains(tc.agents{jj, 1}.pos)
|
||||
% Found a violation, stop checking
|
||||
colliding = true;
|
||||
break;
|
||||
if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange
|
||||
% Check new agent position against all existing
|
||||
% agent positions for communications range
|
||||
connections(jj) = true;
|
||||
for kk = 1:size(tc.obstacles, 1)
|
||||
if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos)
|
||||
connections(jj) = false;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% Agent is colliding with another, try again
|
||||
if ii ~= 1 && colliding
|
||||
% New agent must be connected to an existing agent to
|
||||
% be valid
|
||||
if ii ~= 1 && ~any(connections)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Allow to proceed since no obstacle/collision
|
||||
% violations were found
|
||||
posInvalid = false;
|
||||
% Initialize candidate agent collision geometry
|
||||
candidateGeometry = rectangularPrism;
|
||||
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = fixedCardinalSensor;
|
||||
sensor = sensor.initialize(tc.sensingLength);
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Make sure candidate agent doesn't collide with
|
||||
% domain
|
||||
violation = false;
|
||||
for jj = 1:size(newAgent.collisionGeometry.vertices, 1)
|
||||
% Check if collision geometry exits domain
|
||||
if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3))
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Collect all agent positions
|
||||
posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false);
|
||||
posArray = reshape([posArray{:}], size(tc.agents, 1), 3);
|
||||
|
||||
% Communications checks
|
||||
adjacency = false(size(tc.agents, 1), size(tc.agents, 1));
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
% Compute distance from each to all agents
|
||||
for jj = 1:(size(tc.agents, 1))
|
||||
if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange
|
||||
adjacency(ii, jj) = true;
|
||||
% Make sure candidate doesn't collide with obstacles
|
||||
violation = false;
|
||||
for kk = 1:size(tc.obstacles, 1)
|
||||
if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry)
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Check connectivity
|
||||
G = graph(adjacency);
|
||||
connected = all(conncomp(G) == 1);
|
||||
nIter = nIter + 1;
|
||||
% Make sure candidate doesn't collide with existing
|
||||
% agents
|
||||
violation = false;
|
||||
for kk = 1:(ii - 1)
|
||||
if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry)
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Candidate agent is valid, store to pass in to sim
|
||||
initInvalid = false;
|
||||
tc.agents{ii} = newAgent;
|
||||
end
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.obstacles);
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
end
|
||||
function misim_run(tc)
|
||||
% randomly create obstacles
|
||||
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
|
||||
tc.obstacles = cell(nGeom, 1);
|
||||
|
||||
% Plot domain
|
||||
f = tc.testClass.domain.plotWireframe;
|
||||
% Iterate over obstacles to initialize
|
||||
for ii = 1:size(tc.obstacles, 1)
|
||||
badCandidate = true;
|
||||
while badCandidate
|
||||
% Instantiate a rectangular prism obstacle
|
||||
tc.obstacles{ii} = rectangularPrism;
|
||||
|
||||
% Set plotting limits to focus on the domain
|
||||
xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]);
|
||||
ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]);
|
||||
zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]);
|
||||
% Randomly generate min corner for the obstacle
|
||||
candidateMinCorner = tc.domain.random();
|
||||
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
|
||||
|
||||
% Plot obstacles
|
||||
for ii = 1:size(tc.testClass.obstacles, 1)
|
||||
tc.testClass.obstacles{ii, 1}.plotWireframe(f);
|
||||
% Randomly select a corresponding maximum corner that
|
||||
% satisfies min/max obstacle size specifications
|
||||
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
|
||||
|
||||
% Initialize obstacle
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
|
||||
|
||||
% Check if the obstacle intersects with any existing
|
||||
% obstacles
|
||||
violation = false;
|
||||
for kk = 1:(ii - 1)
|
||||
if geometryIntersects(tc.obstacles{kk}, tc.obstacles{ii})
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Plot objective gradient
|
||||
f = tc.testClass.objective.plot(f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
for ii = 1:size(tc.testClass.agents, 1)
|
||||
f = tc.testClass.agents{ii, 1}.plot(f);
|
||||
f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f);
|
||||
% Make sure that the obstacles are fully contained by
|
||||
% the domain
|
||||
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles don't cover the sensing
|
||||
% objective
|
||||
if obstacleCoversObjective(tc.objective, tc.obstacles{ii})
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the obstacles aren't too close to the
|
||||
% sensing objective
|
||||
if obstacleCrowdsObjective(tc.objective, tc.obstacles{ii}, tc.protectedRange)
|
||||
continue;
|
||||
end
|
||||
|
||||
badCandidate = false;
|
||||
end
|
||||
end
|
||||
|
||||
% Add agents individually, ensuring that each addition does not
|
||||
% invalidate the initialization setup
|
||||
for ii = 1:size(tc.agents, 1)
|
||||
initInvalid = true;
|
||||
while initInvalid
|
||||
candidatePos = [tc.objective.groundPos, 0];
|
||||
% Generate a random position for the agent based on
|
||||
% existing agent positions
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
% domain
|
||||
if ~tc.domain.contains(candidatePos)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that the candidate position does not crowd
|
||||
% the sensing objective and create boring scenarios
|
||||
if agentsCrowdObjective(tc.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure that there exist unobstructed lines of sight at
|
||||
% appropriate ranges to form a connected communications
|
||||
% graph between the agents
|
||||
connections = false(1, ii - 1);
|
||||
for jj = 1:(ii - 1)
|
||||
if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange
|
||||
% Check new agent position against all existing
|
||||
% agent positions for communications range
|
||||
connections(jj) = true;
|
||||
for kk = 1:size(tc.obstacles, 1)
|
||||
if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos)
|
||||
connections(jj) = false;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% New agent must be connected to an existing agent to
|
||||
% be valid
|
||||
if ii ~= 1 && ~any(connections)
|
||||
continue;
|
||||
end
|
||||
|
||||
% Initialize candidate agent collision geometry
|
||||
candidateGeometry = rectangularPrism;
|
||||
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(1, 1, 1, 1, 1, 1);
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
|
||||
% Make sure candidate agent doesn't collide with
|
||||
% domain
|
||||
violation = false;
|
||||
for jj = 1:size(newAgent.collisionGeometry.vertices, 1)
|
||||
% Check if collision geometry exits domain
|
||||
if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3))
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure candidate doesn't collide with obstacles
|
||||
violation = false;
|
||||
for kk = 1:size(tc.obstacles, 1)
|
||||
if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry)
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Make sure candidate doesn't collide with existing
|
||||
% agents
|
||||
violation = false;
|
||||
for kk = 1:(ii - 1)
|
||||
if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry)
|
||||
violation = true;
|
||||
break;
|
||||
end
|
||||
end
|
||||
if violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% Candidate agent is valid, store to pass in to sim
|
||||
initInvalid = false;
|
||||
tc.agents{ii} = newAgent;
|
||||
end
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
|
||||
% Run simulation loop
|
||||
[tc.testClass, f] = tc.testClass.run(f);
|
||||
end
|
||||
function test_basic_partitioning(tc)
|
||||
% place agents a fixed distance +/- X from the domain's center
|
||||
d = 1;
|
||||
|
||||
% make basic domain
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.objective = tc.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2), eye(2)), tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
geometry1 = rectangularPrism;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize([tc.domain.center + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry2 = geometry2.initialize([tc.domain.center - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(1, 1, 1, 1, 1, 1);
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent; agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
|
||||
% Initialize the simulation
|
||||
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
end
|
||||
end
|
||||
end
|
||||
11
validators/agentsCrowdObjective.m
Normal file
11
validators/agentsCrowdObjective.m
Normal file
@@ -0,0 +1,11 @@
|
||||
function c = agentsCrowdObjective(objective, positions, protectedRange)
|
||||
arguments (Input)
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
positions (:, 3) double; % this could be expanded to handle n obstacles in 1 call
|
||||
protectedRange (1, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
c (:, 1) logical;
|
||||
end
|
||||
c = vecnorm(positions(:, 1:2) - objective.groundPos, 2, 2) <= protectedRange;
|
||||
end
|
||||
10
validators/arguments/mustBeGeometry.m
Normal file
10
validators/arguments/mustBeGeometry.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function mustBeGeometry(geometry)
|
||||
validGeometries = ["rectangularPrism";];
|
||||
if isa(geometry, 'cell')
|
||||
for ii = 1:size(geometry, 1)
|
||||
assert(any(arrayfun(@(x) isa(geometry{ii}, x), validGeometries)), "Geometry in index %d is not a valid geometry class", ii);
|
||||
end
|
||||
else
|
||||
assert(any(arrayfun(@(x) isa(geometry, x), validGeometries)), "Geometry is not a valid geometry class");
|
||||
end
|
||||
end
|
||||
10
validators/arguments/mustBeSensor.m
Normal file
10
validators/arguments/mustBeSensor.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function mustBeSensor(sensorModel)
|
||||
validSensorModels = ["fixedCardinalSensor"; "sigmoidSensor";];
|
||||
if isa(sensorModel, 'cell')
|
||||
for ii = 1:size(sensorModel, 1)
|
||||
assert(any(arrayfun(@(x) isa(sensorModel{ii}, x), validSensorModels)), "Sensor in index %d is not a valid sensor class", ii);
|
||||
end
|
||||
else
|
||||
assert(any(arrayfun(@(x) isa(sensorModel, x), validSensorModels)), "Sensor is not a valid sensor class");
|
||||
end
|
||||
end
|
||||
21
validators/domainContainsObstacle.m
Normal file
21
validators/domainContainsObstacle.m
Normal file
@@ -0,0 +1,21 @@
|
||||
function c = domainContainsObstacle(domain, obstacle)
|
||||
arguments (Input)
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
obstacle (1, 1) {mustBeGeometry}; % this could be expanded to handle n obstacles in 1 call
|
||||
end
|
||||
arguments (Output)
|
||||
c (1, 1) logical;
|
||||
end
|
||||
|
||||
switch class(domain)
|
||||
case 'rectangularPrism'
|
||||
switch class(obstacle)
|
||||
case 'rectangularPrism'
|
||||
c = all(domain.minCorner <= obstacle.minCorner) && all(domain.maxCorner >= obstacle.maxCorner);
|
||||
otherwise
|
||||
error("%s not implemented for obstacles of class %s", coder.mfunctionname, class(domain));
|
||||
end
|
||||
otherwise
|
||||
error("%s not implemented for domains of class %s", coder.mfunctionname, class(domain));
|
||||
end
|
||||
end
|
||||
17
validators/geometryIntersects.m
Normal file
17
validators/geometryIntersects.m
Normal file
@@ -0,0 +1,17 @@
|
||||
function c = geometryIntersects(g1, g2)
|
||||
c = false;
|
||||
% Check if g2 contains g1
|
||||
for jj = 1:size(g1.edges, 1)
|
||||
if g2.containsLine(g1.vertices(g1.edges(jj, 1), 1:3), g1.vertices(g1.edges(jj, 2), 1:3))
|
||||
c = true;
|
||||
return;
|
||||
end
|
||||
end
|
||||
% Check if g1 contains g2
|
||||
for jj = 1:size(g2.edges, 1)
|
||||
if g1.containsLine(g2.vertices(g2.edges(jj, 1), 1:3), g2.vertices(g2.edges(jj, 2), 1:3))
|
||||
c = true;
|
||||
return;
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -1,10 +0,0 @@
|
||||
function mustBeAgents(agents)
|
||||
validGeometries = ["rectangularPrismConstraint";];
|
||||
if isa(agents, 'cell')
|
||||
for ii = 1:size(agents, 1)
|
||||
assert(isa(agents{ii}, "agent"), "Agent in index %d is not a valid agent class", ii);
|
||||
end
|
||||
else
|
||||
assert(isa(agents, validGeometries), "Agent is not a valid agent class");
|
||||
end
|
||||
end
|
||||
@@ -1,12 +0,0 @@
|
||||
function mustBeDcm(dcm)
|
||||
% Assert 2D
|
||||
assert(numel(size(dcm)) == 2, "DCM is not 2D");
|
||||
% Assert square
|
||||
assert(size(unique(size(dcm)), 1) == 1, "DCM is not a square matrix");
|
||||
|
||||
epsilon = 1e-9;
|
||||
% Assert inverse equivalent to transpose
|
||||
assert(all(abs(inv(dcm) - dcm') < epsilon, "all"), "DCM inverse is not equivalent to transpose");
|
||||
% Assert determinant is 1
|
||||
assert(det(dcm) > 1 - epsilon && det(dcm) < 1 + epsilon, "DCM has determinant not equal to 1");
|
||||
end
|
||||
@@ -1,10 +0,0 @@
|
||||
function mustBeGeometry(geometry)
|
||||
validGeometries = ["rectangularPrism";];
|
||||
if isa(geometry, 'cell')
|
||||
for ii = 1:size(geometry, 1)
|
||||
assert(isa(geometry{ii}, validGeometries), "Geometry in index %d is not a valid geometry class", ii);
|
||||
end
|
||||
else
|
||||
assert(isa(geometry, validGeometries), "Geometry is not a valid geometry class");
|
||||
end
|
||||
end
|
||||
13
validators/obstacleCoversObjective.m
Normal file
13
validators/obstacleCoversObjective.m
Normal file
@@ -0,0 +1,13 @@
|
||||
function c = obstacleCoversObjective(objective, obstacle)
|
||||
arguments (Input)
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
obstacle (1, 1) {mustBeGeometry}; % this could be expanded to handle n obstacles in 1 call
|
||||
end
|
||||
arguments (Output)
|
||||
c (1, 1) logical;
|
||||
end
|
||||
|
||||
% Check if the obstacle contains the objective's ground position if the
|
||||
% ground position were raised to the obstacle's center's height
|
||||
c = obstacle.contains([objective.groundPos, obstacle.center(3)]);
|
||||
end
|
||||
11
validators/obstacleCrowdsObjective.m
Normal file
11
validators/obstacleCrowdsObjective.m
Normal file
@@ -0,0 +1,11 @@
|
||||
function c = obstacleCrowdsObjective(objective, obstacle, protectedRange)
|
||||
arguments (Input)
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
obstacle (1, 1) {mustBeGeometry}; % this could be expanded to handle n obstacles in 1 call
|
||||
protectedRange (1, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
c (1, 1) logical;
|
||||
end
|
||||
c = norm(obstacle.distance([objective.groundPos, obstacle.center(3)])) <= protectedRange;
|
||||
end
|
||||
Reference in New Issue
Block a user