5 Commits

70 changed files with 231 additions and 1469 deletions

View File

@@ -1,12 +1,16 @@
classdef agent
properties (SetAccess = public, GetAccess = public)
properties (SetAccess = private, GetAccess = public)
% Identifiers
index = NaN;
label = "";
% Sensor
sensorModel;
sensingLength = 0.05; % length parameter used by sensing function
% Guidance
guidanceModel;
% State
lastPos = NaN(1, 3); % position from previous timestep
pos = NaN(1, 3); % current position
@@ -16,29 +20,20 @@ classdef agent
% Collision
collisionGeometry;
barrierFunction;
dBarrierFunction;
% FOV cone
fovGeometry;
% Communication
comRange = NaN;
commsGeometry = spherical;
lesserNeighbors = [];
performance = 0;
% Plotting
scatterPoints;
debug = false;
debugFig;
plotCommsGeometry = true;
end
methods (Access = public)
[obj] = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label);
[obj] = run(obj, domain, partitioning, t, index);
[obj] = run(obj, sensingObjective, domain, partitioning);
[obj, f] = plot(obj, ind, f);
updatePlots(obj);
end

View File

@@ -1,4 +1,4 @@
function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, comRange, label, debug, plotCommsGeometry)
function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'agent')};
pos (1, 3) double;
@@ -6,11 +6,11 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
pan (1, 1) double;
tilt (1, 1) double;
collisionGeometry (1, 1) {mustBeGeometry};
sensorModel (1, 1) {mustBeSensor};
comRange (1, 1) double;
sensorModel (1, 1) {mustBeSensor}
guidanceModel (1, 1) {mustBeA(guidanceModel, 'function_handle')};
comRange (1, 1) double = NaN;
index (1, 1) double = NaN;
label (1, 1) string = "";
debug (1, 1) logical = false;
plotCommsGeometry (1, 1) logical = false;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'agent')};
@@ -22,57 +22,10 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
obj.tilt = tilt;
obj.collisionGeometry = collisionGeometry;
obj.sensorModel = sensorModel;
obj.guidanceModel = guidanceModel;
obj.comRange = comRange;
obj.index = index;
obj.label = label;
obj.debug = debug;
obj.plotCommsGeometry = plotCommsGeometry;
% Add spherical geometry based on com range
obj.commsGeometry = obj.commsGeometry.initialize(obj.pos, comRange, REGION_TYPE.COMMS, sprintf("%s Comms Geometry", obj.label));
if obj.debug
obj.debugFig = figure;
tiledlayout(obj.debugFig, "TileSpacing", "tight", "Padding", "compact");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Objective");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Sensor Performance");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Gradient Objective");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Gradient Sensor Performance");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Sensor Performance x Gradient Objective");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Gradient Sensor Performance x Objective");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Agent Performance (C)");
nexttile;
axes(obj.debugFig.Children(1).Children(1));
axis(obj.debugFig.Children(1).Children(1), "image");
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
title(obj.debugFig.Children(1).Children(1), "Gradient Agent Performance (del C)");
end
% Initialize FOV cone
obj.fovGeometry = cone;

View File

@@ -30,11 +30,6 @@ function [obj, f] = plot(obj, ind, f)
% Plot collision geometry
[obj.collisionGeometry, f] = obj.collisionGeometry.plotWireframe(ind, f);
% Plot communications geometry
if obj.plotCommsGeometry
[obj.commsGeometry, f] = obj.commsGeometry.plotWireframe(ind, f);
end
% Plot FOV geometry
[obj.fovGeometry, f] = obj.fovGeometry.plot(ind, f);
end

View File

@@ -1,155 +1,28 @@
function obj = run(obj, domain, partitioning, t, index)
function obj = run(obj, sensingObjective, domain, partitioning)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'agent')};
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
domain (1, 1) {mustBeGeometry};
partitioning (:, :) double;
t (1, 1) double;
index (1, 1) double;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'agent')};
end
% Collect objective function values across partition
partitionMask = partitioning == index;
objectiveValues = domain.objective.values(partitionMask); % f(omega) on W_n
% Do sensing
[sensedValues, sensedPositions] = obj.sensorModel.sense(obj, sensingObjective, domain, partitioning);
% Compute sensor performance across partition
maskedX = domain.objective.X(partitionMask);
maskedY = domain.objective.Y(partitionMask);
zFactor = 1;
sensorValues = obj.sensorModel.sensorPerformance(obj.pos, obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
sensorValuesLower = obj.sensorModel.sensorPerformance(obj.pos - [0, 0, zFactor * domain.objective.discretizationStep], obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n - [0, 0, z]) on W_n
sensorValuesHigher = obj.sensorModel.sensorPerformance(obj.pos + [0, 0, zFactor * domain.objective.discretizationStep], obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n - [0, 0, z]) on W_n
% Put the values back into the form of the partition to enable basic operations on this data
F = NaN(size(partitionMask));
F(partitionMask) = objectiveValues;
S = NaN(size(partitionMask));
Slower = S;
Shigher = S;
S(partitionMask) = sensorValues;
Slower(partitionMask) = sensorValuesLower;
Shigher(partitionMask) = sensorValuesHigher;
% Find agent's performance
C = S .* F;
obj.performance = [obj.performance, sum(C(~isnan(C)))]; % at current Z only
C = cat(3, Shigher, S, Slower) .* F;
% Compute gradient on agent's performance
[gradCX, gradCY, gradCZ] = gradient(C, domain.objective.discretizationStep); % grad C
gradC = cat(4, gradCX, gradCY, gradCZ);
nGradC = vecnorm(gradC, 2, 4);
if obj.debug
% Compute additional component-level values for diagnosing issues
[gradSensorPerformanceX, gradSensorPerformanceY] = gradient(S, domain.objective.discretizationStep); % grad S_n
[gradObjectiveX, gradObjectiveY] = gradient(F, domain.objective.discretizationStep); % grad f
gradS = cat(3, gradSensorPerformanceX, gradSensorPerformanceY, zeros(size(gradSensorPerformanceX))); % grad S_n
gradF = cat(3, gradObjectiveX, gradObjectiveY, zeros(size(gradObjectiveX))); % grad f
ii = 8;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), F./max(F, [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), S./max(S, [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), vecnorm(gradF, 2, 3)./max(vecnorm(gradF, 2, 3), [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), vecnorm(gradS, 2, 3)./max(vecnorm(gradS, 2, 3), [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), S .* vecnorm(gradF, 2, 3)./max(vecnorm(gradF, 2, 3), [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), F .* vecnorm(gradS, 2, 3)./max(vecnorm(gradS, 2, 3), [], 'all')./(max(F .* vecnorm(gradS, 2, 3)./max(vecnorm(gradS, 2, 3), [], 'all'))));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), C./max(C, [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
ii = ii - 1;
hold(obj.debugFig.Children(1).Children(ii), "on");
cla(obj.debugFig.Children(1).Children(ii));
imagesc(obj.debugFig.Children(1).Children(ii), nGradC./max(nGradC, [], 'all'));
hold(obj.debugFig.Children(1).Children(ii), "off");
[x, y] = find(nGradC == max(nGradC, [], "all"));
% just pick one
r = randi([1, size(x, 1)]);
x = x(r); y = y(r);
% switch them
temp = x;
x = y;
y = temp;
% find objective location in discrete domain
[~, xIdx] = find(domain.objective.groundPos(1) == domain.objective.X);
xIdx = unique(xIdx);
[yIdx, ~] = find(domain.objective.groundPos(2) == domain.objective.Y);
yIdx = unique(yIdx);
for ii = 8:-1:1
hold(obj.debugFig.Children(1).Children(ii), "on");
% plot GA selection
scatter(obj.debugFig.Children(1).Children(ii), x, y, 'go');
scatter(obj.debugFig.Children(1).Children(ii), x, y, 'g+');
% plot objective center
scatter(obj.debugFig.Children(1).Children(ii), xIdx, yIdx, 'ro');
scatter(obj.debugFig.Children(1).Children(ii), xIdx, yIdx, 'r+');
hold(obj.debugFig.Children(1).Children(ii), "off");
end
end
% return now if there is no data to work with, and do not move
if all(isnan(nGradC), 'all')
return;
end
% Use largest grad(C) value to find the direction of the next position
[xNextIdx, yNextIdx, zNextIdx] = ind2sub(size(nGradC), find(nGradC == max(nGradC, [], 'all')));
% switch them
temp = xNextIdx;
xNextIdx = yNextIdx;
yNextIdx = temp;
roundingScale = 10^-log10(domain.objective.discretizationStep);
zKey = zFactor * [1; 0; -1];
pNext = [floor(roundingScale .* mean(unique(domain.objective.X(:, xNextIdx))))./roundingScale, floor(roundingScale .* mean(unique(domain.objective.Y(yNextIdx, :))))./roundingScale, obj.pos(3) + zKey(zNextIdx)]; % have to do some unfortunate rounding here sometimes
% Determine next position
vDir = (pNext - obj.pos)./norm(pNext - obj.pos, 2);
rate = 0.1 - 0.0004 * t; % slow down as you get closer, coming to a stop by the end
nextPos = obj.pos + vDir * rate;
% Determine next planned position
nextPos = obj.guidanceModel(sensedValues, sensedPositions, obj.pos);
% Move to next position
% (dynamics not modeled at this time)
obj.lastPos = obj.pos;
obj.pos = nextPos;
% Reinitialize collision geometry in the new position
% Calculate movement
d = obj.pos - obj.collisionGeometry.center;
if isa(obj.collisionGeometry, 'rectangularPrism')
obj.collisionGeometry = obj.collisionGeometry.initialize([obj.collisionGeometry.minCorner; obj.collisionGeometry.maxCorner] + d, obj.collisionGeometry.tag, obj.collisionGeometry.label);
elseif isa(obj.collisionGeometry, 'spherical')
obj.collisionGeometry = obj.collisionGeometry.initialize(obj.collisionGeometry.center + d, obj.collisionGeometry.radius, obj.collisionGeometry.tag, obj.collisionGeometry.label);
else
error("?");
end
% Reinitialize collision geometry in the new position
obj.collisionGeometry = obj.collisionGeometry.initialize([obj.collisionGeometry.minCorner; obj.collisionGeometry.maxCorner] + d, obj.collisionGeometry.tag, obj.collisionGeometry.label);
end

View File

@@ -25,17 +25,6 @@ function updatePlots(obj)
end
end
% Communications geometry edges
if obj.plotCommsGeometry
for jj = 1:size(obj.commsGeometry.lines, 2)
for ii = 1:size(obj.collisionGeometry.lines(:, jj), 1)
obj.collisionGeometry.lines(ii, jj).XData = obj.collisionGeometry.lines(ii, jj).XData + deltaPos(1);
obj.collisionGeometry.lines(ii, jj).YData = obj.collisionGeometry.lines(ii, jj).YData + deltaPos(2);
obj.collisionGeometry.lines(ii, jj).ZData = obj.collisionGeometry.lines(ii, jj).ZData + deltaPos(3);
end
end
end
% Update FOV geometry surfaces
for jj = 1:size(obj.fovGeometry.surface, 2)
% Update each plot

View File

@@ -1,153 +0,0 @@
function [obj] = constrainMotion(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
if size(obj.agents, 1) < 2
nAAPairs = 0;
else
nAAPairs = nchoosek(size(obj.agents, 1), 2); % unique agent/agent pairs
end
agents = [obj.agents{:}];
v = reshape(([agents.pos] - [agents.lastPos])./obj.timestep, 3, size(obj.agents, 1))';
% Initialize QP based on number of agents and obstacles
nAOPairs = size(obj.agents, 1) * size(obj.obstacles, 1); % unique agent/obstacle pairs
nADPairs = size(obj.agents, 1) * 5; % agents x (4 walls + 1 ceiling)
nLNAPairs = sum(obj.constraintAdjacencyMatrix, 'all') - size(obj.agents, 1);
total = nAAPairs + nAOPairs + nADPairs + nLNAPairs;
kk = 1;
A = zeros(total, 3 * size(obj.agents, 1));
b = zeros(total, 1);
% Set up collision avoidance constraints
h = NaN(size(obj.agents, 1));
h(logical(eye(size(obj.agents, 1)))) = 0; % self value is 0
for ii = 1:(size(obj.agents, 1) - 1)
for jj = (ii + 1):size(obj.agents, 1)
h(ii, jj) = norm(agents(ii).pos - agents(jj).pos)^2 - (agents(ii).collisionGeometry.radius + agents(jj).collisionGeometry.radius)^2;
h(jj, ii) = h(ii, jj);
A(kk, (3 * ii - 2):(3 * ii)) = -2 * (agents(ii).pos - agents(jj).pos);
A(kk, (3 * jj - 2):(3 * jj)) = -A(kk, (3 * ii - 2):(3 * ii));
b(kk) = obj.barrierGain * h(ii, jj)^3;
kk = kk + 1;
end
end
hObs = NaN(size(obj.agents, 1), size(obj.obstacles, 1));
% Set up obstacle avoidance constraints
for ii = 1:size(obj.agents, 1)
for jj = 1:size(obj.obstacles, 1)
% find closest position to agent on/in obstacle
cPos = obj.obstacles{jj}.closestToPoint(agents(ii).pos);
hObs(ii, jj) = dot(agents(ii).pos - cPos, agents(ii).pos - cPos) - agents(ii).collisionGeometry.radius^2;
A(kk, (3 * ii - 2):(3 * ii)) = -2 * (agents(ii).pos - cPos);
b(kk) = obj.barrierGain * hObs(ii, jj)^3;
kk = kk + 1;
end
end
% Set up domain constraints (walls and ceiling only)
% Floor constraint is implicit with an obstacle corresponding to the
% minimum allowed altitude, but I included it anyways
for ii = 1:size(obj.agents, 1)
% X minimum
h_xMin = (agents(ii).pos(1) - obj.domain.minCorner(1)) - agents(ii).collisionGeometry.radius;
A(kk, (3 * ii - 2):(3 * ii)) = [-1, 0, 0];
b(kk) = obj.barrierGain * h_xMin^3;
kk = kk + 1;
% X maximum
h_xMax = (obj.domain.maxCorner(1) - agents(ii).pos(1)) - agents(ii).collisionGeometry.radius;
A(kk, (3 * ii - 2):(3 * ii)) = [1, 0, 0];
b(kk) = obj.barrierGain * h_xMax^3;
kk = kk + 1;
% Y minimum
h_yMin = (agents(ii).pos(2) - obj.domain.minCorner(2)) - agents(ii).collisionGeometry.radius;
A(kk, (3 * ii - 2):(3 * ii)) = [0, -1, 0];
b(kk) = obj.barrierGain * h_yMin^3;
kk = kk + 1;
% Y maximum
h_yMax = (obj.domain.maxCorner(2) - agents(ii).pos(2)) - agents(ii).collisionGeometry.radius;
A(kk, (3 * ii - 2):(3 * ii)) = [0, 1, 0];
b(kk) = obj.barrierGain * h_yMax^3;
kk = kk + 1;
% Z minimum
h_zMin = (agents(ii).pos(3) - obj.domain.minCorner(3)) - agents(ii).collisionGeometry.radius;
A(kk, (3 * ii - 2):(3 * ii)) = [0, 0, -1];
b(kk) = obj.barrierGain * h_zMin^3;
kk = kk + 1;
% Z maximum
h_zMax = (obj.domain.maxCorner(2) - agents(ii).pos(2)) - agents(ii).collisionGeometry.radius;
A(kk, (3 * ii - 2):(3 * ii)) = [0, 0, 1];
b(kk) = obj.barrierGain * h_zMax^3;
kk = kk + 1;
end
% Save off h function values (ignoring network constraints which may evolve in time)
obj.h(:, obj.timestepIndex) = [h(triu(true(size(obj.agents, 1)), 1)); reshape(hObs, [], 1); h_xMin; h_xMax; h_yMin; h_yMax; h_zMin; h_zMax;];
% Add communication network constraints
hComms = NaN(size(obj.agents, 1));
hComms(logical(eye(size(obj.agents, 1)))) = 0;
for ii = 1:(size(obj.agents, 1) - 1)
for jj = (ii + 1):size(obj.agents, 1)
if obj.constraintAdjacencyMatrix(ii, jj)
hComms(ii, jj) = min([obj.agents{ii}.commsGeometry.radius, obj.agents{jj}.commsGeometry.radius])^2 - norm(agents(ii).pos - agents(jj).pos)^2;
A(kk, (3 * ii - 2):(3 * ii)) = 2 * (agents(ii).pos - agents(jj).pos);
A(kk, (3 * jj - 2):(3 * jj)) = -A(kk, (3 * ii - 2):(3 * ii));
b(kk) = obj.barrierGain * hComms(ii, jj);
% dVNominal = v(ii, 1:3) - v(jj, 1:3); % nominal velocities
% h_dot_nom = -2 * (agents(ii).pos - agents(jj).pos) * dVNominal';
% b(kk) = -h_dot_nom + obj.barrierGain * hComms(ii, jj)^3;
kk = kk + 1;
end
end
end
% Solve QP program generated earlier
vhat = reshape(v', 3 * size(obj.agents, 1), 1);
H = 2 * eye(3 * size(obj.agents, 1));
f = -2 * vhat;
% Update solution based on constraints
assert(size(A,2) == size(H,1))
assert(size(A,1) == size(b,1))
assert(size(H,1) == length(f))
opt = optimoptions('quadprog', 'Display', 'off');
[vNew, ~, exitflag, m] = quadprog(sparse(H), double(f), A, b, [],[], [], [], [], opt);
assert(exitflag == 1, sprintf('quadprog failure... %s%s', newline, m.message));
vNew = reshape(vNew, 3, size(obj.agents, 1))';
if exitflag <= 0
warning("QP failed, continuing with unconstrained solution...")
vNew = v;
end
% Update the "next position" that was previously set by unconstrained
% GA using the constrained solution produced here
for ii = 1:size(vNew, 1)
obj.agents{ii}.pos = obj.agents{ii}.lastPos + vNew(ii, :) * obj.timestep;
end
% Here we run this at the simulation level, but in reality there is no
% parent level, so this would be run independently on each agent.
% Running at the simulation level is just meant to simplify the
% simulation
end

View File

@@ -1,34 +1,20 @@
function obj = initialize(obj, domain, objective, agents, minAlt, timestep, partitoningFreq, maxIter, obstacles, makePlots, makeVideo)
function obj = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
domain (1, 1) {mustBeGeometry};
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
agents (:, 1) cell;
minAlt (1, 1) double = 1;
timestep (:, 1) double = 0.05;
partitoningFreq (:, 1) double = 0.25
maxIter (:, 1) double = 1000;
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
makePlots(1, 1) logical = true;
makeVideo (1, 1) logical = true;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% enable/disable plotting and video writer
obj.makePlots = makePlots;
if ~obj.makePlots
if makeVideo
warning("makeVideo set to true, but makePlots set to false. Setting makeVideo to false.");
makeVideo = false;
end
end
obj.makeVideo = makeVideo;
% Define simulation time parameters
obj.timestep = timestep;
obj.timestepIndex = 0;
obj.maxIter = maxIter - 1;
% Define domain
@@ -38,56 +24,26 @@ function obj = initialize(obj, domain, objective, agents, minAlt, timestep, part
% Add geometries representing obstacles within the domain
obj.obstacles = obstacles;
% Add an additional obstacle spanning the domain's footprint to
% represent the minimum allowable altitude
obj.minAlt = minAlt;
if obj.minAlt > 0
obj.obstacles{end + 1, 1} = rectangularPrism;
obj.obstacles{end, 1} = obj.obstacles{end, 1}.initialize([obj.domain.minCorner; obj.domain.maxCorner(1:2), obj.minAlt], "OBSTACLE", "Minimum Altitude Domain Constraint");
end
% Define objective
obj.objective = objective;
% Define agents
obj.agents = agents;
obj.constraintAdjacencyMatrix = logical(eye(size(agents, 1)));
% Set labels for agents and collision geometries in cases where they
% were not provieded at the time of their initialization
for ii = 1:size(obj.agents, 1)
% Agent
if isempty(char(obj.agents{ii}.label))
obj.agents{ii}.label = sprintf("Agent %d", ii);
end
% Collision geometry
if isempty(char(obj.agents{ii}.collisionGeometry.label))
obj.agents{ii}.collisionGeometry.label = sprintf("Agent %d Collision Geometry", ii);
end
end
% Compute adjacency matrix and lesser neighbors
% Compute adjacency matrix
obj = obj.updateAdjacency();
obj = obj.lesserNeighbor();
% Set up times to iterate over
obj.times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
obj.partitioningTimes = obj.times(obj.partitioningFreq:obj.partitioningFreq:size(obj.times, 1));
% Prepare performance data store (at t = 0, all have 0 performance)
obj.fPerf = figure;
obj.perf = [zeros(size(obj.agents, 1) + 1, 1), NaN(size(obj.agents, 1) + 1, size(obj.partitioningTimes, 1) - 1)];
% Prepare h function data store
obj.h = NaN(size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2 + size(obj.agents, 1) * size(obj.obstacles, 1) + 6, size(obj.times, 1) - 1);
% Create initial partitioning
obj = obj.partition();
% Initialize variable that will store agent positions for trail plots
obj.posHist = NaN(size(obj.agents, 1), obj.maxIter + 1, 3);
obj.posHist(1:size(obj.agents, 1), 1, 1:3) = reshape(cell2mat(cellfun(@(x) x.pos, obj.agents, 'UniformOutput', false)), size(obj.agents, 1), 1, 3);
% Set up plots showing initialized state
obj = obj.plot();
end

View File

@@ -1,76 +0,0 @@
function obj = lesserNeighbor(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% initialize solution with self-connections only
constraintAdjacencyMatrix = logical(eye(size(obj.agents, 1)));
for ii = 1:size(obj.agents, 1)
% Find lesser neighbors of each agent
% Lesser neighbors of ii are jj < ii in range of ii
lesserNeighbors = [];
for jj = 1:(ii - 1)
if obj.adjacency(ii, jj)
lesserNeighbors = [lesserNeighbors, jj];
end
end
obj.agents{ii}.lesserNeighbors = lesserNeighbors;
% Early exit for isolated agents
if isempty(obj.agents{ii}.lesserNeighbors)
continue
end
% Focus on subgraph defined by lesser neighbors
subgraphAdjacency = obj.adjacency(obj.agents{ii}.lesserNeighbors, obj.agents{ii}.lesserNeighbors);
% Find connected components in each agent's subgraph
% TODO: rewrite this using matlab "conncomp" function?
visited = false(size(subgraphAdjacency, 1), 1);
components = {};
for jj = 1:size(subgraphAdjacency, 1)
if ~visited(jj)
reachable = bfs(subgraphAdjacency, jj);
visited(reachable) = true;
components{end+1} = obj.agents{ii}.lesserNeighbors(reachable);
end
end
% Connect to the greatest index in each connected component in the
% lesser neighborhood of this agent
for jj = 1:size(components, 2)
constraintAdjacencyMatrix(ii, max(components{jj})) = true;
constraintAdjacencyMatrix(max(components{jj}), ii) = true;
end
end
obj.constraintAdjacencyMatrix = constraintAdjacencyMatrix | constraintAdjacencyMatrix';
end
function cComp = bfs(subgraphAdjacency, startIdx)
n = size(subgraphAdjacency, 1);
visited = false(1, n);
queue = startIdx;
cComp = startIdx;
visited(startIdx) = true;
while ~isempty(queue)
current = queue(1);
queue(1) = [];
% Find all neighbors of current node in the subgraph
neighbors = find(subgraphAdjacency(current, :));
for neighbor = neighbors
if ~visited(neighbor)
visited(neighbor) = true;
cComp = [cComp, neighbor];
queue = [queue, neighbor];
end
end
end
cComp = sort(cComp);
end

View File

@@ -4,7 +4,6 @@ classdef miSim
% Simulation parameters
properties (SetAccess = private, GetAccess = public)
timestep = NaN; % delta time interval for simulation iterations
timestepIndex = NaN; % index of the current timestep (useful for time-indexed arrays)
partitioningFreq = NaN; % number of simulation timesteps at which the partitioning routine is re-run
maxIter = NaN; % maximum number of simulation iterations
domain = rectangularPrism;
@@ -12,13 +11,10 @@ classdef miSim
obstacles = cell(0, 1); % geometries that define obstacles within the domain
agents = cell(0, 1); % agents that move within the domain
adjacency = NaN; % Adjacency matrix representing communications network graph
constraintAdjacencyMatrix = NaN; % Adjacency matrix representing desired lesser neighbor connections
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
partitioning = NaN;
perf; % sensor performance timeseries array
performance = 0; % simulation performance timeseries vector
barrierGain = 100; % collision avoidance parameter
minAlt = 1; % minimum allowed altitude constraint
performance = NaN; % current cumulative sensor performance
oldMeanTotalPerf = 0;
fPerf; % performance plot figure
end
@@ -26,52 +22,37 @@ classdef miSim
properties (Access = private)
% Sim
t = NaN; % current sim time
perf; % sensor performance timeseries array
times;
partitioningTimes;
% Plot objects
makePlots = true; % enable/disable simulation plotting (performance implications)
makeVideo = true; % enable/disable VideoWriter (performance implications)
f; % main plotting tiled layout figure
f = firstPlotSetup(); % main plotting tiled layout figure
connectionsPlot; % objects for lines connecting agents in spatial plots
graphPlot; % objects for abstract network graph plot
partitionPlot; % objects for partition plot
performancePlot; % objects for sensor performance plot
posHist; % data for trail plot
trailPlot; % objects for agent trail plot
performancePlot; % objects for sensor performance plot
% Indicies for various plot types in the main tiled layout figure
spatialPlotIndices = [6, 4, 3, 2];
objectivePlotIndices = [6, 4];
networkGraphIndex = 5;
partitionGraphIndex = 1;
% CBF plotting
h; % h function values
hf; % h function plotting figure
caPlot; % objects for collision avoidance h function plot
obsPlot; % objects for obstacle h function plot
domPlot; % objects for domain h function plot
end
methods (Access = public)
[obj] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
[obj] = run(obj);
[obj] = lesserNeighbor(obj);
[obj] = constrainMotion(obj);
[obj] = partition(obj);
[obj] = updateAdjacency(obj);
[obj] = plot(obj);
[obj] = plotConnections(obj);
[obj] = plotPartitions(obj);
[obj] = plotGraph(obj);
[obj] = plotTrails(obj);
[obj] = plotH(obj);
[obj] = updatePlots(obj, updatePartitions);
validate(obj);
end
methods (Access = private)
[v] = setupVideoWriter(obj);
end
end
end

View File

@@ -16,13 +16,7 @@ function obj = partition(obj)
[~, idx] = max(agentPerformances, [], 3);
% Collect agent indices in the same way as performance
indices = 1:size(obj.agents, 1);
agentInds = squeeze(tensorprod(indices, ones(size(obj.objective.X))));
if size(agentInds, 1) ~= size(obj.agents, 1)
agentInds = reshape(agentInds, [size(obj.agents, 1), size(agentInds)]); % needed for cases with 1 agent where prior squeeze is too agressive
end
agentInds = num2cell(agentInds, 2:3);
agentInds = cellfun(@(x) squeeze(x), agentInds, 'UniformOutput', false);
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
agentInds = cat(3, agentInds{:});
@@ -30,4 +24,18 @@ function obj = partition(obj)
[m, n, ~] = size(agentInds);
[jj, kk] = ndgrid(1:m, 1:n);
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
% Get individual agent sensor performance
nowIdx = [0; obj.partitioningTimes] == obj.t;
if isnan(obj.t)
nowIdx = 1;
end
for ii = 1:size(obj.agents, 1)
idx = obj.partitioning == ii;
agentPerformance = squeeze(agentPerformances(:, :, ii));
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
end
% Current total performance
obj.perf(end, nowIdx) = sum(obj.perf(1:(end - 1), nowIdx));
end

View File

@@ -5,11 +5,6 @@ function obj = plot(obj)
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% fast exit when plotting is disabled
if ~obj.makePlots
return;
end
% Plot domain
[obj.domain, obj.f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
@@ -22,7 +17,7 @@ function obj = plot(obj)
% Plot objective gradient
obj.f = obj.domain.objective.plot(obj.objectivePlotIndices, obj.f);
% Plot agents and their collision/communications geometries
% Plot agents and their collision geometries
for ii = 1:size(obj.agents, 1)
[obj.agents{ii}, obj.f] = obj.agents{ii}.plot(obj.spatialPlotIndices, obj.f);
end
@@ -36,9 +31,6 @@ function obj = plot(obj)
% Plot domain partitioning
obj = obj.plotPartitions();
% Plot agent trails
obj = obj.plotTrails();
% Enforce plot limits
for ii = 1:size(obj.spatialPlotIndices, 2)
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
@@ -48,7 +40,4 @@ function obj = plot(obj)
% Plot performance
obj = obj.plotPerformance();
% Plot h functions
obj = obj.plotH();
end

View File

@@ -9,9 +9,9 @@ function obj = plotConnections(obj)
% Iterate over lower triangle off-diagonal region of the
% adjacency matrix to plot communications links between agents
X = []; Y = []; Z = [];
for ii = 2:size(obj.constraintAdjacencyMatrix, 1)
for ii = 2:size(obj.adjacency, 1)
for jj = 1:(ii - 1)
if obj.constraintAdjacencyMatrix(ii, jj)
if obj.adjacency(ii, jj)
X = [X; obj.agents{ii}.pos(1), obj.agents{jj}.pos(1)];
Y = [Y; obj.agents{ii}.pos(2), obj.agents{jj}.pos(2)];
Z = [Z; obj.agents{ii}.pos(3), obj.agents{jj}.pos(3)];

View File

@@ -7,7 +7,7 @@ function obj = plotGraph(obj)
end
% Form graph from adjacency matrix
G = graph(obj.constraintAdjacencyMatrix, 'omitselfloops');
G = graph(obj.adjacency, 'omitselfloops');
% Plot graph object
if isnan(obj.networkGraphIndex)

View File

@@ -1,61 +0,0 @@
function obj = plotH(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
obj.hf = figure;
tiledlayout(obj.hf, 4, 1, "TileSpacing", "tight", "Padding", "compact");
nexttile(obj.hf.Children(1));
axes(obj.hf.Children(1).Children(1));
grid(obj.hf.Children(1).Children(1), "on");
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(1), "");
title(obj.hf.Children(1).Children(1), "Collision Avoidance");
hold(obj.hf.Children(1).Children(1), "on");
obj.caPlot = plot(obj.h(1:(size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2), :)');
legendStrings = [];
for ii = 2:size(obj.agents, 1)
for jj = 1:(ii - 1)
legendStrings = [legendStrings; sprintf("A%d A%d", jj, ii)];
end
end
legend(obj.hf.Children(1).Children(1), legendStrings, 'Location', 'bestoutside');
hold(obj.hf.Children(1).Children(2), "off");
nexttile(obj.hf.Children(1));
axes(obj.hf.Children(1).Children(1));
grid(obj.hf.Children(1).Children(1), "on");
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(2), "");
title(obj.hf.Children(1).Children(1), "Obstacles");
hold(obj.hf.Children(1).Children(1), "on");
obj.obsPlot = plot(obj.h((1 + (size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2)):(((size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2)) + size(obj.agents, 1) * size(obj.obstacles, 1)), :)');
legendStrings = [];
for ii = 1:size(obj.obstacles, 1)
for jj = 1:size(obj.agents, 1)
legendStrings = [legendStrings; sprintf("A%d O%d", jj, ii)];
end
end
legend(obj.hf.Children(1).Children(1), legendStrings, 'Location', 'bestoutside');
hold(obj.hf.Children(1).Children(2), "off");
nexttile(obj.hf.Children(1));
axes(obj.hf.Children(1).Children(1));
grid(obj.hf.Children(1).Children(1), "on");
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(1), "");
title(obj.hf.Children(1).Children(1), "Domain");
hold(obj.hf.Children(1).Children(1), "on");
obj.domPlot = plot(obj.h((1 + (((size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2)) + size(obj.agents, 1) * size(obj.obstacles, 1))):size(obj.h, 1), 1:end)');
legend(obj.hf.Children(1).Children(1), ["X Min"; "X Max"; "Y Min"; "Y Max"; "Z Min"; "Z Max";], 'Location', 'bestoutside');
hold(obj.hf.Children(1).Children(2), "off");
nexttile(obj.hf.Children(1));
axes(obj.hf.Children(1).Children(1));
grid(obj.hf.Children(1).Children(1), "on");
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(1), "");
title(obj.hf.Children(1).Children(1), "Communications");
% skipped this for now because it is very complicated
end

View File

@@ -6,13 +6,6 @@ function obj = plotPerformance(obj)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% fast exit when plotting is disabled
if ~obj.makePlots
return;
end
obj.fPerf = figure;
axes(obj.fPerf);
title(obj.fPerf.Children(1), "Sensor Performance");
xlabel(obj.fPerf.Children(1), 'Time (s)');
@@ -22,22 +15,20 @@ function obj = plotPerformance(obj)
% Plot current cumulative performance
hold(obj.fPerf.Children(1), 'on');
o = plot(obj.fPerf.Children(1), obj.perf(end, :));
warning('off', 'MATLAB:gui:array:InvalidArrayShape'); % suppress this warning to avoid polluting output
o.XData = NaN(1, obj.maxIter); % correct time will be set at runtime
o.YData = [0, NaN(1, obj.maxIter - 1)];
hold(obj.fPerf.Children(1), 'off');
% Plot current agent performance
for ii = 1:(size(obj.perf, 1) - 1)
hold(obj.fPerf.Children(1), 'on');
o = [o; plot(obj.fPerf.Children(1), obj.perf(ii, :))];
o(end).XData = NaN(1, obj.maxIter); % correct time will be set at runtime
o(end).YData = [0, NaN(1, obj.maxIter - 1)];
hold(obj.fPerf.Children(1), 'off');
end
% Add legend
agentStrings = string(cellfun(@(x) x.label, obj.agents, 'UniformOutput', false));
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
for ii = 1:size(agentStrings, 1)
agentStrings(ii) = sprintf(agentStrings(ii), ii);
end
agentStrings = ["Total"; agentStrings];
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');

View File

@@ -1,26 +0,0 @@
function obj = plotTrails(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')}
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')}
end
% fast exit when plotting is disabled
if ~obj.makePlots
return;
end
% Plot full range of position history on each spatial plot axes
o = [];
for ii = 1:(size(obj.posHist, 1))
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), 'on');
o = [o; plot3(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), obj.posHist(ii, 1:obj.maxIter, 1), obj.posHist(ii, 1:obj.maxIter, 2), obj.posHist(ii, 1:obj.maxIter, 3), 'Color', 'k', 'LineWidth', 1)];
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), 'off');
end
% Copy trails to other figures?
obj.trailPlot = o;
% Add legend?
end

View File

@@ -7,47 +7,40 @@ function [obj] = run(obj)
end
% Start video writer
if obj.makeVideo
v = obj.setupVideoWriter();
v.open();
end
v = obj.setupVideoWriter();
v.open();
steady = 0;
for ii = 1:size(obj.times, 1)
% Display current sim time
obj.t = obj.times(ii);
obj.timestepIndex = ii;
fprintf("Sim Time: %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
% Validate current simulation configuration
obj.validate();
% Check if it's time for new partitions
updatePartitions = false;
if ismember(obj.t, obj.partitioningTimes)
% Check if it's time to end the sim (performance has settled)
if obj.t >= obj.partitioningTimes(5)
idx = find(obj.t == obj.partitioningTimes);
newMeanTotalPerf = mean(obj.perf(end, ((idx - 5 + 1):idx)));
if (obj.oldMeanTotalPerf * 0.95 <= newMeanTotalPerf) && (newMeanTotalPerf <= max(1e-6, obj.oldMeanTotalPerf * 1.05))
steady = steady + 1;
if steady >= 3
fprintf("Performance is stable, terminating early at %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
break; % performance is not improving further, exit main sim loop
end
end
obj.oldMeanTotalPerf = newMeanTotalPerf;
end
updatePartitions = true;
obj = obj.partition();
end
% Determine desired communications links
obj = obj.lesserNeighbor();
% Iterate over agents to simulate their unconstrained motion
% Iterate over agents to simulate their motion
for jj = 1:size(obj.agents, 1)
obj.agents{jj} = obj.agents{jj}.run(obj.domain, obj.partitioning, obj.t, jj);
obj.agents{jj} = obj.agents{jj}.run(obj.objective, obj.domain, obj.partitioning);
end
% Adjust motion determined by unconstrained gradient ascent using
% CBF constraints solved by QP
obj = constrainMotion(obj);
% Finished simulation for this timestep, do accounting
% Update agent position history array
obj.posHist(1:size(obj.agents, 1), obj.timestepIndex + 1, 1:3) = reshape(cell2mat(cellfun(@(x) x.pos, obj.agents, 'UniformOutput', false)), size(obj.agents, 1), 1, 3);
% Update total performance
obj.performance = [obj.performance, sum(cellfun(@(x) x.performance(end), obj.agents))];
% Update adjacency matrix
obj = obj.updateAdjacency();
@@ -55,14 +48,10 @@ function [obj] = run(obj)
obj = obj.updatePlots(updatePartitions);
% Write frame in to video
if obj.makeVideo
I = getframe(obj.f);
v.writeVideo(I);
end
I = getframe(obj.f);
v.writeVideo(I);
end
if obj.makeVideo
% Close video file
v.close();
end
end
% Close video file
v.close();
end

View File

@@ -7,29 +7,26 @@ function obj = updateAdjacency(obj)
end
% Initialize assuming only self-connections
A = true(size(obj.agents, 1));
A = logical(eye(size(obj.agents, 1)));
% Check lower triangle off-diagonal connections
for ii = 2:size(A, 1)
for jj = 1:(ii - 1)
% Check that agents are not out of range
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) > min([obj.agents{ii}.commsGeometry.radius, obj.agents{jj}.commsGeometry.radius])
A(ii, jj) = false; % comm range violation
continue;
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
% Make sure that obstacles don't obstruct the line
% of sight, breaking the connection
for kk = 1:size(obj.obstacles, 1)
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
A(ii, jj) = true;
end
end
% need extra handling for cases with no obstacles
if isempty(obj.obstacles)
A(ii, jj) = true;
end
end
% % Check that agents do not have their line of sight obstructed
% for kk = 1:size(obj.obstacles, 1)
% if obj.obstacles{kk}.containsLine(obj.agents{jj}.pos, obj.agents{ii}.pos)
% A(ii, jj) = false;
% end
% end
end
end
obj.adjacency = A & A';
if any(obj.adjacency - obj.constraintAdjacencyMatrix < 0, 'all')
warning("Eliminated network connections that were necessary");
end
obj.adjacency = A | A';
end

View File

@@ -7,18 +7,13 @@ function [obj] = updatePlots(obj, updatePartitions)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% Fast exit when plotting is disabled
if ~obj.makePlots
return;
end
% Update agent positions, collision/communication geometries
% Update agent positions, collision geometries
for ii = 1:size(obj.agents, 1)
obj.agents{ii}.updatePlots();
end
% The remaining updates might should all be possible to do in a clever
% way that moves existing lines instead of clearing and
% The remaining updates might be possible to do in a clever way
% that moves existing lines instead of clearing and
% re-plotting, which is much better for performance boost
% Update agent connections plot
@@ -41,34 +36,19 @@ function [obj] = updatePlots(obj, updatePartitions)
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
end
% Update agent trails
for ii = 1:size(obj.agents, 1)
obj.trailPlot(ii).XData(obj.timestepIndex) = obj.posHist(ii, obj.timestepIndex, 1);
obj.trailPlot(ii).YData(obj.timestepIndex) = obj.posHist(ii, obj.timestepIndex, 2);
obj.trailPlot(ii).ZData(obj.timestepIndex) = obj.posHist(ii, obj.timestepIndex, 3);
end
drawnow;
% Update performance plot
% Re-normalize performance plot
normalizingFactor = 1/max(obj.performance(end));
obj.performancePlot(1).YData(1:length(obj.performance)) = obj.performance * normalizingFactor;
obj.performancePlot(1).XData(obj.timestepIndex) = obj.t;
for ii = 2:(size(obj.agents, 1) + 1)
obj.performancePlot(ii).YData(1:length(obj.performance)) = obj.agents{ii - 1}.performance * normalizingFactor;
obj.performancePlot(ii).XData(obj.timestepIndex) = obj.t;
end
if updatePartitions
% find index corresponding to the current time
nowIdx = [0; obj.partitioningTimes] == obj.t;
nowIdx = find(nowIdx);
% Update h function plots
for ii = 1:size(obj.caPlot, 1)
obj.caPlot(ii).YData(obj.timestepIndex) = obj.h(ii, obj.timestepIndex);
end
for ii = 1:size(obj.obsPlot, 1)
obj.obsPlot(ii).YData(obj.timestepIndex) = obj.h(ii + size(obj.caPlot, 1), obj.timestepIndex);
end
for ii = 1:size(obj.domPlot, 1)
obj.domPlot(ii).YData(obj.timestepIndex) = obj.h(ii + size(obj.caPlot, 1) + size(obj.obsPlot, 1), obj.timestepIndex);
% Re-normalize performance plot
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
for ii = 2:size(obj.performancePlot, 1)
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
end
end
end

View File

@@ -1,12 +0,0 @@
function validate(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
end
if max(conncomp(graph(obj.adjacency))) ~= 1
warning("Network is not connected");
end
end

View File

@@ -10,8 +10,6 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
obj (1,1) {mustBeA(obj, 'sensingObjective')};
end
obj.discretizationStep = discretizationStep;
obj.groundAlt = domain.minCorner(3);
obj.protectedRange = protectedRange;
@@ -21,8 +19,8 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
yMin = min(domain.footprint(:, 2));
yMax = max(domain.footprint(:, 2));
xGrid = unique([xMin:obj.discretizationStep:xMax, xMax]);
yGrid = unique([yMin:obj.discretizationStep:yMax, yMax]);
xGrid = unique([xMin:discretizationStep:xMax, xMax]);
yGrid = unique([yMin:discretizationStep:yMax, yMax]);
% Store grid points for plotting later
[obj.X, obj.Y] = meshgrid(xGrid, yGrid);
@@ -37,7 +35,6 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
% store ground position
idx = obj.values == 1;
obj.groundPos = [obj.X(idx), obj.Y(idx)];
obj.groundPos = obj.groundPos(1, 1:2); % for safety, in case 2 points are maximal (somehow)
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")
end

View File

@@ -1,19 +0,0 @@
function cPos = closestToPoint(obj, pos)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
pos (:, 3) double;
end
arguments (Output)
cPos (:, 3) double;
end
cPos = NaN(1, 3);
for ii = 1:3
if pos(ii) < obj.minCorner(ii)
cPos(ii) = obj.minCorner(ii);
elseif pos(ii) > obj.maxCorner(ii)
cPos(ii) = obj.maxCorner(ii);
else
cPos(ii) = pos(ii);
end
end
end

View File

@@ -9,38 +9,33 @@ function c = containsLine(obj, pos1, pos2)
end
d = pos2 - pos1;
% endpoint contained (trivial case)
if obj.contains(pos1) || obj.contains(pos2)
c = true;
% edge case where the line is parallel to the geometry
if abs(d) < 1e-12
% check if it happens to start or end inside or outside of
% the geometry
if obj.contains(pos1) || obj.contains(pos2)
c = true;
else
c = false;
end
return;
end
% parameterize the line segment to check for an intersection
tMin = 0;
tMax = 1;
tmin = -inf;
tmax = inf;
% Standard case
for ii = 1:3
% line is parallel to geometry
if abs(d(ii)) < 1e-12
if pos1(ii) < obj.minCorner(ii) || pos1(ii) > obj.maxCorner(ii)
c = false;
return;
end
else
t1 = (obj.minCorner(ii) - pos1(ii)) / d(ii);
t2 = (obj.maxCorner(ii) - pos1(ii)) / d(ii);
tLow = min(t1, t2);
tHigh = max(t1, t2);
tMin = max(tMin, tLow);
tMax = min(tMax, tHigh);
if tMin > tMax
c = false;
return;
end
t1 = (obj.minCorner(ii) - pos1(ii)) / d(ii);
t2 = (obj.maxCorner(ii) - pos2(ii)) / d(ii);
tmin = max(tmin, min(t1, t2));
tmax = min(tmax, max(t1, t2));
if tmin > tmax
c = false;
return;
end
end
c = true;
end
c = (tmax >= 0) && (tmin <= 1);
end

View File

@@ -4,7 +4,7 @@ function d = distance(obj, pos)
pos (:, 3) double;
end
arguments (Output)
d (:, 1) double;
d (:, 1) double
end
if obj.contains(pos)
% Queried point is inside geometry

View File

@@ -1,42 +0,0 @@
function g = distanceGradient(obj, pos)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
pos (:, 3) double;
end
arguments (Output)
g (:, 3) double
end
% find nearest point on surface to query position
q = min(max(pos, obj.minCorner), obj.maxCorner);
% Find distance and direction between pos and q
v = pos - q;
vNorm = norm(v);
% position is outside geometry
if vNorm > 0
% gradient is normalized vector from q to p
g = v / vNorm;
return;
end
% position is on or in geometry
% find distances to each face in each dimension
distances = [pos(1) - obj.minCorner(1), obj.maxCorner(1) - pos(1), pos(2) - obj.minCorner(2), obj.maxCorner(2) - pos(2), pos(3) - obj.minCorner(3), obj.maxCorner(3) - pos(3)];
[~, idx] = min(distances);
% I think there needs to be additional handling here for the
% edge/corner cases, where there are ways to balance or resolve ties
% when two faces are equidistant to the query position
assert(sum(idx) == idx, "Implement edge case handling");
% select gradient that brings us quickest to the nearest face
g = [ 1, 0, 0; ...
-1, 0, 0; ...
0, 1, 0; ...
0, -1, 0; ...
0, 0, 1; ...
0, 0, -1;];
g = g(idx, :);
end

View File

@@ -24,10 +24,6 @@ function obj = initialize(obj, bounds, tag, label, objectiveFunction, discretiza
% Compute center
obj.center = obj.minCorner + obj.dimensions ./ 2;
% Compute a (fake) radius
% fully contains the rectangular prism from the center
obj.radius = (1/2) * sqrt(sum(obj.dimensions.^2));
% Compute vertices
obj.vertices = [obj.minCorner;
obj.maxCorner(1), obj.minCorner(2:3);
@@ -48,13 +44,4 @@ function obj = initialize(obj, bounds, tag, label, objectiveFunction, discretiza
if tag == REGION_TYPE.DOMAIN
obj.objective = sensingObjective;
end
% Initialize CBF
% first part evaluates to +/-1 if the point is outside/inside the collision geometry
% Second part determines the distance from the point to the boundary of the collision geometry
obj.barrierFunction = @(x) (1 - 2 * obj.collisionGeometry.contains(x)) * obj.collisionGeometry.distance(x); % x is 1x3
% gradient of barrier function
obj.dBarrierFunction = @(x) obj.collisionGeometry.distanceGradient(x); % x is 1x3
% as long as the collisionGeometry object is updated during runtime,
% these functions never have to be updated again
end

View File

@@ -1,12 +1,11 @@
function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain, minAlt)
function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
label (1, 1) string = "";
minDimension (1, 1) double = 10;
maxDimension (1, 1) double = 20;
maxDimension (1, 1) double= 20;
domain (1, 1) {mustBeGeometry} = rectangularPrism;
minAlt (1, 1) double = 0;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
@@ -28,7 +27,7 @@ function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, d
while ~domain.contains(candidateMaxCorner) || all(domain.objective.groundPos + domain.objective.protectedRange >= candidateMinCorner(1:2), 2) && all(domain.objective.groundPos - domain.objective.protectedRange <= candidateMaxCorner(1:2), 2)
if ii == 0 || ii > 10
candidateMinCorner = domain.random();
candidateMinCorner(3) = minAlt; % bind to floor (plus minimum altitude constraint)
candidateMinCorner(3) = 0; % bind to floor
ii = 1;
end

View File

@@ -3,6 +3,7 @@ classdef rectangularPrism
properties (SetAccess = private, GetAccess = public)
% Meta
tag = REGION_TYPE.INVALID;
label = "";
% Spatial
minCorner = NaN(1, 3);
@@ -10,7 +11,6 @@ classdef rectangularPrism
dimensions = NaN(1, 3);
center = NaN;
footprint = NaN(4, 2);
radius = NaN; % fake radius
% Graph
vertices = NaN(8, 3);
@@ -20,13 +20,8 @@ classdef rectangularPrism
% Plotting
lines;
% collision
barrierFunction;
dBarrierFunction;
end
properties (SetAccess = public, GetAccess = public)
label = "";
% Sensing objective (for DOMAIN region type only)
objective;
end
@@ -36,9 +31,7 @@ classdef rectangularPrism
[obj ] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain);
[r ] = random(obj);
[c ] = contains(obj, pos);
[cPos ] = closestToPoint(obj, pos);
[d ] = distance(obj, pos);
[g ] = distanceGradient(obj, pos);
[c ] = containsLine(obj, pos1, pos2);
[obj, f] = plotWireframe(obj, ind, f);
end

View File

@@ -1,10 +0,0 @@
function c = contains(obj, pos)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'spherical')};
pos (:, 3) double;
end
arguments (Output)
c (:, 1) logical
end
c = norm(obj.center - pos) <= obj.radius;
end

View File

@@ -1,28 +0,0 @@
function c = containsLine(obj, pos1, pos2)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'spherical')};
pos1 (1, 3) double;
pos2 (1, 3) double;
end
arguments (Output)
c (1, 1) logical
end
d = pos2 - pos1;
f = pos1 - obj.center;
a = dot(d, d);
b = 2 * dot(f, d);
c = dot(f, f) - obj.radius^2;
disc = b^2 - 4*a*c;
if disc < 0
c = false;
return;
end
t = [(-b - sqrt(disc)) / (2 * a), (-b + sqrt(disc)) / (2 * a)];
c = (t(1) >= 0 && t(1) <= 1) || (t(2) >= 0 && t(2) <= 1);
end

View File

@@ -1,42 +0,0 @@
function obj = initialize(obj, center, radius, tag, label)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'spherical')};
center (1, 3) double;
radius (1, 1) double;
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
label (1, 1) string = "";
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'spherical')};
end
obj.tag = tag;
obj.label = label;
% Define geometry
obj.center = center;
obj.radius = radius;
obj.diameter = 2 * obj.radius;
% Initialize CBF
obj.barrierFunction = @(x) NaN;
% gradient of barrier function
obj.dBarrierFunction = @(x) NaN;
% fake vertices in a cross pattern
obj.vertices = [obj.center + [obj.radius, 0, 0]; ...
obj.center - [obj.radius, 0, 0]; ...
obj.center + [0, obj.radius, 0]; ...
obj.center - [0, obj.radius, 0]; ...
obj.center + [0, 0, obj.radius]; ...
obj.center - [0, 0, obj.radius]];
% fake edges in two perpendicular rings
obj.edges = [1, 3; ...
3, 2; ...
2, 4; ...
4, 1; ...
1, 5; ...
5, 2; ...
2, 6; ...
6, 1];
end

View File

@@ -1,43 +0,0 @@
function [obj, f] = plotWireframe(obj, ind, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'spherical')};
ind (1, :) double = NaN;
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'spherical')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Create axes if they don't already exist
f = firstPlotSetup(f);
% Create plotting inputs
[X, Y, Z] = sphere(8);
% Scale
X = X * obj.radius;
Y = Y * obj.radius;
Z = Z * obj.radius;
% Shift
X = X + obj.center(1);
Y = Y + obj.center(2);
Z = Z + obj.center(3);
% Plot the boundaries of the geometry into 3D view
if isnan(ind)
o = plot3(f.CurrentAxes, X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
else
hold(f.Children(1).Children(ind(1)), "on");
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
hold(f.Children(1).Children(ind(1)), "off");
end
% Copy to other requested tiles
if numel(ind) > 1
for ii = 2:size(ind, 2)
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
end
end
obj.lines = o;
end

View File

@@ -1,15 +0,0 @@
function r = random(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'spherical')};
end
arguments (Output)
r (1, 3) double
end
y = (rand - 0.5) * 2; % uniform draw on [-1, 1]
R = sqrt(1 - y^2);
lon = (rand - 0.5) * 2 * pi; % uniform draw on [-pi, pi]
s = [R * sin(lon), y, R * cos(lon)]; % random point on surface
r = s * rand^(1/3); % scaled to random normalized radius [0, 1]
r = obj.center + obj.radius * r;
end

View File

@@ -1,37 +0,0 @@
classdef spherical
% Rectangular prism geometry
properties (SetAccess = private, GetAccess = public)
% Spatial
center = NaN;
radius = NaN;
diameter = NaN;
vertices; % fake vertices
edges; % fake edges
% Plotting
lines;
% collision
barrierFunction;
dBarrierFunction;
end
properties (SetAccess = public, GetAccess = public)
% Meta
tag = REGION_TYPE.INVALID;
label = "";
% Sensing objective (for DOMAIN region type only)
objective;
end
methods (Access = public)
[obj ] = initialize(obj, center, radius, tag, label);
[r ] = random(obj);
[c ] = contains(obj, pos);
[d ] = distance(obj, pos);
[g ] = distanceGradient(obj, pos);
[c ] = containsLine(obj, pos1, pos2);
[obj, f] = plotWireframe(obj, ind, f);
end
end

View File

@@ -9,7 +9,6 @@ classdef REGION_TYPE
OBSTACLE (2, [255, 127, 127]); % obstacle region
COLLISION (3, [255, 255, 128]); % collision avoidance region
FOV (4, [255, 165, 0]); % field of view region
COMMS (5, [0, 255, 0]); % comunications region
end
methods
function obj = REGION_TYPE(id, color)

View File

@@ -0,0 +1,26 @@
function nextPos = gradientAscent(sensedValues, sensedPositions, pos, rate)
arguments (Input)
sensedValues (:, 1) double;
sensedPositions (:, 3) double;
pos (1, 3) double;
rate (1, 1) double = 0.1;
end
arguments (Output)
nextPos(1, 3) double;
end
% As a default, maintain current position
if size(sensedValues, 1) == 0 && size(sensedPositions, 1) == 0
nextPos = pos;
return;
end
% Select next position by maximum sensed value
nextPos = sensedPositions(sensedValues == max(sensedValues), :);
nextPos = [nextPos(1, 1:2), pos(3)]; % just in case two get selected, simply pick one
% rate-limit motion
v = nextPos - pos;
nextPos = pos + (v / norm(v, 2)) * rate;
end

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="guidanceModels" Type="Relative"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="1d8d2b42-2863-4985-9cf2-980917971eba" type="Reference"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="containsLine.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="spherical.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="contains.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="initialize.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="plotWireframe.m" type="File"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="@spherical" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="plotTrails.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="lesserNeighbor.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="constrainMotion.m" type="File"/>

View File

@@ -1,2 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info/>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="guidanceModels" type="File"/>

View File

@@ -1,2 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="random.m" type="File"/>
<Info location="sense.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="distanceGradient.m" type="File"/>

View File

@@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="closestToPoint.m" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="gradientAscent.m" type="File"/>

View File

@@ -0,0 +1,21 @@
function [values, positions] = sense(obj, agent, sensingObjective, domain, partitioning)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
agent (1, 1) {mustBeA(agent, 'agent')};
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
domain (1, 1) {mustBeGeometry};
partitioning (:, :) double;
end
arguments (Output)
values (:, 1) double;
positions (:, 3) double;
end
% Find positions for this agent's assigned partition in the domain
idx = partitioning == agent.index;
positions = [sensingObjective.X(idx), sensingObjective.Y(idx), zeros(size(sensingObjective.X(idx)))];
% Evaluate objective function at every point in this agent's
% assigned partiton
values = sensingObjective.values(idx);
end

View File

@@ -3,11 +3,6 @@ classdef test_miSim < matlab.unittest.TestCase
% System under test
testClass = miSim;
% Debug
makeVideo = true; % disable video writing for big performance increase
makePlots = true; % disable plotting for big performance increase (also disables video)
plotCommsGeometry = false; % disable plotting communications geometries
% Sim
maxIter = 250;
timestep = 0.05
@@ -16,7 +11,6 @@ classdef test_miSim < matlab.unittest.TestCase
% Domain
domain = rectangularPrism; % domain geometry
minDimension = 10;
minAlt = 1; % minimum allowed agent altitude
% Obstacles
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
@@ -31,8 +25,8 @@ classdef test_miSim < matlab.unittest.TestCase
objective = sensingObjective;
% Agents
minAgents = 4; % Minimum number of agents to be randomly generated
maxAgents = 6; % Maximum number of agents to be randomly generated
minAgents = 2; % Minimum number of agents to be randomly generated
maxAgents = 4; % Maximum number of agents to be randomly generated
sensingLength = 0.05; % length parameter used by sensing function
agents = cell(0, 1);
@@ -90,13 +84,12 @@ classdef test_miSim < matlab.unittest.TestCase
while badCandidate
% Instantiate a rectangular prism obstacle inside the domain
tc.obstacles{ii} = rectangularPrism;
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt);
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
% Check if the obstacle collides with an existing obstacle
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
badCandidate = false;
end
end
end
@@ -111,11 +104,11 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -155,14 +148,14 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize candidate agent collision geometry
candidateGeometry = rectangularPrism;
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION);
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
% Initialize candidate agent sensor model
sensor = sigmoidSensor;
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize candidate agent
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, tc.comRange);
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
% Make sure candidate agent doesn't collide with
% domain
@@ -210,7 +203,7 @@ classdef test_miSim < matlab.unittest.TestCase
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles, tc.makeVideo);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
end
function misim_run(tc)
% randomly create obstacles
@@ -223,7 +216,7 @@ classdef test_miSim < matlab.unittest.TestCase
while badCandidate
% Instantiate a rectangular prism obstacle inside the domain
tc.obstacles{ii} = rectangularPrism;
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt);
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
% Check if the obstacle collides with an existing obstacle
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
@@ -243,11 +236,11 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -286,17 +279,15 @@ classdef test_miSim < matlab.unittest.TestCase
end
% Initialize candidate agent collision geometry
% candidateGeometry = rectangularPrism;
% candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION);
candidateGeometry = spherical;
candidateGeometry = candidateGeometry.initialize(candidatePos, tc.collisionRanges(ii), REGION_TYPE.COLLISION);
candidateGeometry = rectangularPrism;
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
% Initialize candidate agent sensor model
sensor = sigmoidSensor;
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize candidate agent
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, tc.comRange);
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
% Make sure candidate agent doesn't collide with
% domain
@@ -344,7 +335,7 @@ classdef test_miSim < matlab.unittest.TestCase
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles, tc.makeVideo);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
% Run simulation loop
tc.testClass = tc.testClass.run();
@@ -363,8 +354,8 @@ classdef test_miSim < matlab.unittest.TestCase
dh = [0,0,-1]; % bias agent altitude from domain center
geometry1 = rectangularPrism;
geometry2 = geometry1;
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
% Initialize agent sensor model
sensor = sigmoidSensor;
@@ -378,23 +369,18 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize agents
tc.agents = {agent; agent};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, 3*d);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, 3*d);
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
% Optional third agent along the +Y axis
geometry3 = rectangularPrism;
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
tc.agents{3} = agent;
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, 3*d);
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, cell(0, 1), false, false);
tc.verifyEqual(tc.testClass.partitioning(500, 500:502), [2, 3, 1]); % all three near center
tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all')); % more non-assignments than partition 1 assignments
tc.verifyLessThan(sum(tc.testClass.partitioning == 2, 'all'), sum(tc.testClass.partitioning == 1, 'all')); % more partition 1 assignments than partition 2 assignments
tc.verifyLessThan(sum(tc.testClass.partitioning == 3, 'all'), sum(tc.testClass.partitioning == 2, 'all')); % more partition 3 assignments than partition 2 assignments
tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1; 2; 3;]);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
function test_single_partition(tc)
% make basic domain
@@ -406,7 +392,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize agent collision geometry
geometry1 = rectangularPrism;
geometry1 = geometry1.initialize([[tc.domain.center(1:2), 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2), 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
geometry1 = geometry1.initialize([[tc.domain.center(1:2), 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2), 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
% Initialize agent sensor model
sensor = sigmoidSensor;
@@ -416,324 +402,15 @@ classdef test_miSim < matlab.unittest.TestCase
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
% Plot sensor parameters (optional)
% f = sensor.plotParameters();
f = sensor.plotParameters();
% Initialize agents
tc.agents = {agent};
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], zeros(1,3), 0, 0, geometry1, sensor, 3);
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3, 1, sprintf("Agent %d", 1));
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, cell(0, 1), false, false);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1]);
tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all'));
end
function test_single_partition_basic_GA(tc)
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [2, 8]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
geometry1 = rectangularPrism;
geometry1 = geometry1.initialize([[tc.domain.center(1:2)-tc.domain.dimensions(1)/3, 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2)-tc.domain.dimensions(1)/3, 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
% Homogeneous sensor model parameters
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
% Plot sensor parameters (optional)
% f = sensor.plotParameters();
% Initialize agents
tc.agents = {agent};
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2)-tc.domain.dimensions(1)/3, 3], zeros(1,3), 0, 0, geometry1, sensor, 3, "", false);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, cell(0, 1), true, false);
% Run the simulation
tc.testClass = tc.testClass.run();
if isgraphics(tc.testClass.agents{1}.debugFig)
close(tc.testClass.agents{1}.debugFig);
end
% tc.verifyGreaterThan(tc.testClass.performance(end)/max(tc.testClass.performance), 0.99); % ends up very near a relative maximum
end
function test_collision_avoidance(tc)
% No obstacles
% Fixed agent initial conditions
% Exaggerated large collision geometries to test CA
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [3, 7]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
radius = 1.5;
d = [2.5, 0, 0];
geometry1 = spherical;
geometry2 = spherical;
geometry1 = geometry1.initialize(tc.domain.center + d, radius, REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - d, radius, REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
% Homogeneous sensor model parameters
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
% Initialize agents
tc.agents = {agent; agent};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + d, zeros(1,3), 0, 0, geometry1, sensor, 5);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d, zeros(1,3), 0, 0, geometry2, sensor, 5);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, 50, cell(0, 1), tc.makeVideo, tc.makePlots);
% Run the simulation
tc.testClass.run();
end
function test_obstacle_avoidance(tc)
% Right now this seems to prove that the communications
% constraints are working, but the result is dissatisfying
% Fixed single obstacle
% Fixed two agents initial conditions
% Exaggerated large collision geometries
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5.2195]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
radius = 1.1;
d = [3, 0, 0];
yOffset = 0;
% choice of 0 leads to the agents getting stuck attempting to go around the obstacle on both sides
% choice of 1 leads to one agent easily going around while the other gets stuck and the communications link is broken
geometry1 = spherical;
geometry2 = geometry1;
geometry1 = geometry1.initialize(tc.domain.center - d + [0, radius * 1.1 - yOffset, 0], radius, REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - d - [0, radius * 1.1 + yOffset, 0], radius, REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
% Initialize obstacles
obstacleLength = 1;
tc.obstacles{1} = rectangularPrism;
tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, tc.minAlt; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1");
% Initialize agents
commsRadius = (2*radius + obstacleLength) * 0.9; % defined such that they cannot go around the obstacle on both sides
tc.agents = {agent; agent;};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - d + [0, radius * 1.1 - yOffset, 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d - [0, radius *1.1 + yOffset, 0], zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles, tc.makeVideo);
% Run the simulation
tc.testClass.run();
end
function test_communications_constraint(tc)
% No obstacles
% Fixed two agents initial conditions
% Negligible collision geometries
% Non-standard domain with two objectives that will try to pull the
% agents apart
l = 10; % domain size
dom = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
dom.objective = dom.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [2, 8]) + mvnpdf([x(:), y(:)], [8, 8]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
radius = 0.1;
d = [1, 0, 0];
geometry1 = spherical;
geometry2 = geometry1;
geometry1 = geometry1.initialize(dom.center + d, radius, REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(dom.center - d, radius, REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
% Initialize obstacles
tc.obstacles = {};
% Initialize agents
commsRadius = 4; % defined such that they cannot reach their objective without breaking connectivity
tc.agents = {agent; agent;};
tc.agents{1} = tc.agents{1}.initialize(dom.center + d, zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
tc.agents{2} = tc.agents{2}.initialize(dom.center - d, zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(dom, dom.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, 75, tc.obstacles, true, false);
% Run the simulation
tc.testClass = tc.testClass.run();
end
function test_obstacle_blocks_comms_LOS(tc)
% Fixed single obstacle
% Fixed two agents initial conditions
% Exaggerated large communications radius
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
radius = .25;
d = 2;
geometry1 = spherical;
geometry2 = geometry1;
geometry1 = geometry1.initialize(tc.domain.center - [d, 0, 0], radius, REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - [0, d, 0], radius, REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
% Initialize agents
commsRadius = 5;
tc.agents = {agent; agent;};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [0, d, 0], zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
% Initialize obstacles
obstacleLength = 1.5;
tc.obstacles{1} = rectangularPrism;
tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, 0; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1");
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, 0, tc.timestep, tc.partitoningFreq, 125, tc.obstacles, false, false);
% No communications link should be established
tc.assertEqual(tc.testClass.adjacency, logical(eye(2)));
end
function test_LNA_case_1(tc)
% based on example in meeting
% No obstacles
% Fixed 5 agents initial conditions
% unitary communicaitons radius
% negligible collision radius
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
radius = .01;
d = 1;
geometry5 = spherical;
geometry1 = geometry5.initialize(tc.domain.center + [d, 0, 0], radius, REGION_TYPE.COLLISION);
geometry2 = geometry5.initialize(tc.domain.center, radius, REGION_TYPE.COLLISION);
geometry3 = geometry5.initialize(tc.domain.center + [-d, d, 0], radius, REGION_TYPE.COLLISION);
geometry4 = geometry5.initialize(tc.domain.center + [-2*d, d, 0], radius, REGION_TYPE.COLLISION);
geometry5 = geometry5.initialize(tc.domain.center + [0, d, 0], radius, REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
% Initialize agents
commsRadius = d;
tc.agents = {agent; agent; agent; agent; agent;};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center, zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [-d, d, 0], zeros(1,3), 0, 0, geometry3, sensor, commsRadius);
tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [-2*d, d, 0], zeros(1,3), 0, 0, geometry4, sensor, commsRadius);
tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, d, 0], zeros(1,3), 0, 0, geometry5, sensor, commsRadius);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, 0, tc.timestep, tc.partitoningFreq, 125, tc.obstacles, false, false);
% Constraint adjacency matrix defined by LNA should be as follows
tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ...
[ 1, 1, 0, 0, 0; ...
1, 1, 0, 0, 1; ...
0, 0, 1, 1, 1;
0, 0, 1, 1, 0;
0, 1, 1, 0, 1;]));
end
function test_LNA_case_2(tc)
% based on example in paper Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information
% No obstacles
% Fixed 7 agents initial conditions
% unitary communicaitons radius
% negligible collision radius
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
radius = .01;
d = 1;
geometry7 = spherical;
geometry1 = geometry7.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], radius, REGION_TYPE.COLLISION);
geometry2 = geometry7.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], radius, REGION_TYPE.COLLISION);
geometry3 = geometry7.initialize(tc.domain.center + [0.9 * d, 0, 0], radius, REGION_TYPE.COLLISION);
geometry4 = geometry7.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], radius, REGION_TYPE.COLLISION);
geometry5 = geometry7.initialize(tc.domain.center + [0, 0.9 * d, 0], radius, REGION_TYPE.COLLISION);
geometry6 = geometry7.initialize(tc.domain.center, radius, REGION_TYPE.COLLISION);
geometry7 = geometry7.initialize(tc.domain.center + [d/2, d/2, 0], radius, REGION_TYPE.COLLISION);
% Initialize agent sensor model
sensor = sigmoidSensor;
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
% Initialize agents
commsRadius = d;
tc.agents = {agent; agent; agent; agent; agent; agent; agent;};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [0.9 * d, 0, 0], zeros(1,3), 0, 0, geometry3, sensor, commsRadius);
tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], zeros(1,3), 0, 0, geometry4, sensor, commsRadius);
tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, 0.9 * d, 0], zeros(1,3), 0, 0, geometry5, sensor, commsRadius);
tc.agents{6} = tc.agents{6}.initialize(tc.domain.center, zeros(1,3), 0, 0, geometry6, sensor, commsRadius);
tc.agents{7} = tc.agents{7}.initialize(tc.domain.center + [d/2, d/2, 0], zeros(1,3), 0, 0, geometry7, sensor, commsRadius);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, 0, tc.timestep, tc.partitoningFreq, 125, tc.obstacles, false, false);
% Constraint adjacency matrix defined by LNA should be as follows
tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ...
[ 1, 1, 0, 0, 0, 0, 0; ...
1, 1, 0, 0, 1, 0, 0; ...
0, 0, 1, 1, 0, 0, 0;
0, 0, 1, 1, 0, 1, 0;
0, 1, 0, 0, 1, 1, 0;
0, 0, 0, 1, 1, 1, 1;
0, 0, 0, 0, 0, 1, 1; ]));
end
end
@@ -748,4 +425,4 @@ classdef test_miSim < matlab.unittest.TestCase
end
end
end
end
end

View File

@@ -1,5 +1,5 @@
function mustBeGeometry(geometry)
validGeometries = ["rectangularPrism"; "spherical"];
validGeometries = ["rectangularPrism";];
if isa(geometry, 'cell')
for ii = 1:size(geometry, 1)
assert(any(arrayfun(@(x) isa(geometry{ii}, x), validGeometries)), "Geometry in index %d is not a valid geometry class", ii);