2 Commits

13 changed files with 170 additions and 105 deletions

View File

@@ -23,7 +23,7 @@ classdef agent
pos (1, 3) double; pos (1, 3) double;
vel (1, 3) double; vel (1, 3) double;
cBfromC (3, 3) double {mustBeDcm}; cBfromC (3, 3) double {mustBeDcm};
collisionGeometry (1, 1) {mustBeConstraintGeometries}; collisionGeometry (1, 1) {mustBeGeometry};
index (1, 1) double = NaN; index (1, 1) double = NaN;
label (1, 1) string = ""; label (1, 1) string = "";
end end

View File

@@ -1,39 +1,39 @@
classdef rectangularPrismConstraint classdef rectangularPrism
% Rectangular prism constraint geometry % Rectangular prism geometry
properties (SetAccess = private, GetAccess = public) properties (SetAccess = private, GetAccess = public)
tag = REGION_TYPE.INVALID; tag = REGION_TYPE.INVALID;
label = ""; label = "";
minCorner = NaN(3, 1); minCorner = NaN(1, 3);
maxCorner = NaN(3, 1); maxCorner = NaN(1, 3);
dimensions = NaN(3, 1); dimensions = NaN(1, 3);
center = NaN; center = NaN;
vertices = NaN(8, 3); vertices = NaN(8, 3);
footprint = NaN(2, 4); footprint = NaN(4, 2);
end end
methods (Access = public) methods (Access = public)
function obj = initialize(obj, bounds, tag, label) function obj = initialize(obj, bounds, tag, label)
arguments (Input) arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')}; obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
bounds (3, 2) double; bounds (2, 3) double;
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID; tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
label (1, 1) string = ""; label (1, 1) string = "";
end end
arguments (Output) arguments (Output)
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')}; obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
end end
obj.tag = tag; obj.tag = tag;
obj.label = label; obj.label = label;
%% Define geometry bounds by LL corner and UR corner %% Define geometry bounds by LL corner and UR corner
obj.minCorner = bounds(:, 1); obj.minCorner = bounds(1, 1:3);
obj.maxCorner = bounds(:, 2); obj.maxCorner = bounds(2, 1:3);
% Compute L, W, H % Compute L, W, H
obj.dimensions = [obj.maxCorner(1) - obj.minCorner(1), obj.maxCorner(2) - obj.minCorner(2), obj.maxCorner(3) - obj.minCorner(3)]; obj.dimensions = [obj.maxCorner(1) - obj.minCorner(1), obj.maxCorner(2) - obj.minCorner(2), obj.maxCorner(3) - obj.minCorner(3)];
@@ -42,43 +42,79 @@ classdef rectangularPrismConstraint
obj.center = obj.minCorner + obj.dimensions ./ 2; obj.center = obj.minCorner + obj.dimensions ./ 2;
% Compute vertices % Compute vertices
obj.vertices = [obj.minCorner'; obj.vertices = [obj.minCorner;
obj.maxCorner(1), obj.minCorner(2:3)'; obj.maxCorner(1), obj.minCorner(2:3);
obj.maxCorner(1:2)', obj.minCorner(3); obj.maxCorner(1:2), obj.minCorner(3);
obj.minCorner(1), obj.maxCorner(2), obj.minCorner(3); obj.minCorner(1), obj.maxCorner(2), obj.minCorner(3);
obj.minCorner(1:2)', obj.maxCorner(3); obj.minCorner(1:2), obj.maxCorner(3);
obj.maxCorner(1), obj.minCorner(2), obj.maxCorner(3); obj.maxCorner(1), obj.minCorner(2), obj.maxCorner(3);
obj.minCorner(1), obj.maxCorner(2:3)' obj.minCorner(1), obj.maxCorner(2:3)
obj.maxCorner';]; obj.maxCorner;];
% Compute footprint % Compute footprint
obj.footprint = [obj.minCorner(1:2, 1), ... obj.footprint = [obj.minCorner(1:2); ...
[obj.minCorner(1, 1); obj.maxCorner(2, 1)], ... [obj.minCorner(1), obj.maxCorner(2)]; ...
[obj.maxCorner(1, 1); obj.minCorner(2, 1)], ... [obj.maxCorner(1), obj.minCorner(2)]; ...
obj.maxCorner(1:2, 1)]; obj.maxCorner(1:2)];
end end
function r = random(obj) function r = random(obj)
arguments (Input) arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')}; obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
end end
arguments (Output) arguments (Output)
r (1, 3) double r (1, 3) double
end end
r = (obj.vertices(1, 1:3) + rand(1, 3) .* obj.vertices(8, 1:3) - obj.vertices(1, 1:3))'; r = (obj.vertices(1, 1:3) + rand(1, 3) .* obj.vertices(8, 1:3) - obj.vertices(1, 1:3))';
end end
function c = contains(obj, pos) function d = distance(obj, pos)
arguments (Input) arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')}; obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
pos (:, 3) double; pos (:, 3) double;
end end
arguments (Output) arguments (Output)
c (1, 1) logical d (:, 1) double
end end
c = all(pos >= repmat(obj.minCorner', size(pos, 1), 1), 2) & all(pos <= repmat(obj.maxCorner', size(pos, 1), 1), 2); cPos = NaN(1, 3);
for ii = 1:3
if pos(ii) < obj.minCorner(ii)
cPos(ii) = obj.minCorner(ii);
elseif pos(ii) > obj.maxCorner(ii)
cPos(ii) = obj.maxCorner(ii);
else
cPos(ii) = pos(ii);
end
end
d = norm(cPos - pos);
end
function d = interiorDistance(obj, pos)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
pos (:, 3) double;
end
arguments (Output)
d (:, 1) double
end
% find minimum distance to any face
d = min([pos(1) - obj.minCorner(1), ...
pos(2) - obj.minCorner(2), ...
pos(3) - obj.minCorner(3), ...
obj.maxCorner(1) - pos(1), ...
obj.maxCorner(2) - pos(2), ...
obj.maxCorner(3) - pos(3)]);
end
function c = contains(obj, pos)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
pos (:, 3) double;
end
arguments (Output)
c (:, 1) logical
end
c = all(pos >= repmat(obj.minCorner, size(pos, 1), 1), 2) & all(pos <= repmat(obj.maxCorner, size(pos, 1), 1), 2);
end end
function f = plotWireframe(obj, f) function f = plotWireframe(obj, f)
arguments (Input) arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrismConstraint')}; obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure; f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end end
arguments (Output) arguments (Output)
@@ -97,7 +133,7 @@ classdef rectangularPrismConstraint
Y = [obj.vertices(edges(:,1),2), obj.vertices(edges(:,2),2)]'; Y = [obj.vertices(edges(:,1),2), obj.vertices(edges(:,2),2)]';
Z = [obj.vertices(edges(:,1),3), obj.vertices(edges(:,2),3)]'; Z = [obj.vertices(edges(:,1),3), obj.vertices(edges(:,2),3)]';
% Plot the boundaries of the constraint geometry % Plot the boundaries of the geometry
hold(f.CurrentAxes, "on"); hold(f.CurrentAxes, "on");
plot3(X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2); plot3(X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
hold(f.CurrentAxes, "off"); hold(f.CurrentAxes, "off");

14
miSim.m
View File

@@ -3,20 +3,20 @@ classdef miSim
% Simulation parameters % Simulation parameters
properties (SetAccess = private, GetAccess = public) properties (SetAccess = private, GetAccess = public)
domain = rectangularPrismConstraint; domain = rectangularPrism;
objective = sensingObjective; objective = sensingObjective;
constraintGeometries = cell(0, 1); % geometries that define constraints within the domain obstacles = cell(0, 1); % geometries that define obstacles within the domain
agents = cell(0, 1); % agents that move within the domain agents = cell(0, 1); % agents that move within the domain
end end
methods (Access = public) methods (Access = public)
function obj = initialize(obj, domain, objective, agents, constraintGeometries) function obj = initialize(obj, domain, objective, agents, obstacles)
arguments (Input) arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')}; obj (1, 1) {mustBeA(obj, 'miSim')};
domain (1, 1) {mustBeConstraintGeometries}; domain (1, 1) {mustBeGeometry};
objective (1, 1) {mustBeA(objective, 'sensingObjective')}; objective (1, 1) {mustBeA(objective, 'sensingObjective')};
agents (:, 1) cell {mustBeAgents}; agents (:, 1) cell {mustBeAgents};
constraintGeometries (:, 1) cell {mustBeConstraintGeometries} = cell(0, 1); obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
end end
arguments (Output) arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')}; obj (1, 1) {mustBeA(obj, 'miSim')};
@@ -25,8 +25,8 @@ classdef miSim
%% Define domain %% Define domain
obj.domain = domain; obj.domain = domain;
%% Add constraint geometries against the domain %% Add geometries representing obstacles within the domain
obj.constraintGeometries = constraintGeometries; obj.obstacles = obstacles;
%% Define objective %% Define objective
obj.objective = objective; obj.objective = objective;

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="mustBeConstraintGeometries.m" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="mustBeGeometry.m" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="rectangularPrism.m" type="File"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="rectangularPrismConstraint.m" type="File"/>

View File

@@ -16,7 +16,7 @@ classdef sensingObjective
arguments (Input) arguments (Input)
obj (1,1) {mustBeA(obj, 'sensingObjective')}; obj (1,1) {mustBeA(obj, 'sensingObjective')};
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')}; objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
footprint (2, :) double; footprint (:, 2) double;
groundAlt (1, 1) double = 0; groundAlt (1, 1) double = 0;
discretizationStep (1, 1) double = 1; discretizationStep (1, 1) double = 1;
end end
@@ -27,10 +27,10 @@ classdef sensingObjective
obj.groundAlt = groundAlt; obj.groundAlt = groundAlt;
% Extract footprint limits % Extract footprint limits
xMin = min(footprint(1, :)); xMin = min(footprint(:, 1));
xMax = max(footprint(1, :)); xMax = max(footprint(:, 1));
yMin = min(footprint(2, :)); yMin = min(footprint(:, 2));
yMax = max(footprint(2, :)); yMax = max(footprint(:, 2));
xGrid = unique([xMin:discretizationStep:xMax, xMax]); xGrid = unique([xMin:discretizationStep:xMax, xMax]);
yGrid = unique([yMin:discretizationStep:yMax, yMax]); yGrid = unique([yMin:discretizationStep:yMax, yMax]);

View File

@@ -2,15 +2,19 @@ classdef test_miSim < matlab.unittest.TestCase
properties (Access = private) properties (Access = private)
testClass = miSim; testClass = miSim;
% Domain % Domain
domain = rectangularPrismConstraint; domain = rectangularPrism;
% Obstacles % Obstacles
constraintGeometries = cell(1, 0); minNumObstacles = 1;
maxNumObstacles = 3;
obstacles = cell(1, 0);
minObstacleDimension = 1;
% Objective % Objective
objective = sensingObjective; objective = sensingObjective;
objectiveFunction = @(x, y) 0; objectiveFunction = @(x, y) 0;
objectiveDiscretizationStep = 0.01; objectiveDiscretizationStep = 0.01;
protectedRange = 1;
% Agents % Agents
minAgents = 3; minAgents = 3;
@@ -30,16 +34,21 @@ classdef test_miSim < matlab.unittest.TestCase
methods (TestMethodSetup) methods (TestMethodSetup)
% Generate a random domain % Generate a random domain
function tc = setDomain(tc) function tc = setDomain(tc)
% random integer-sized domain within [-10, 10] in all dimensions % random integer-sized domain ranging from [0, 5] to [0, 25] in all dimensions
L = ceil(5 + rand * 10 + rand * 10); L = ceil(5 + rand * 10 + rand * 10);
tc.domain = tc.domain.initialize(([0, L; 0, L; 0, L]), REGION_TYPE.DOMAIN, "Domain"); tc.domain = tc.domain.initialize([zeros(1, 3); L * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
end end
% Generate a random sensing objective within that domain % Generate a random sensing objective within that domain
function tc = setSensingObjective(tc) function tc = setSensingObjective(tc)
mu = tc.domain.random(); mu = tc.domain.minCorner;
sig = [3, 1; 1, 4]; while tc.domain.interiorDistance(mu) < tc.protectedRange
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1, 1:2), sig); mu = tc.domain.random();
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3, 1), tc.objectiveDiscretizationStep); end
mu(3) = 0;
assert(tc.domain.contains(mu));
sig = [2 + rand * 2, 1; 1, 2 + rand * 2];
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1:2), sig);
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
end end
% Instantiate agents, they will be initialized under different % Instantiate agents, they will be initialized under different
% parameters in individual test cases % parameters in individual test cases
@@ -54,39 +63,49 @@ classdef test_miSim < matlab.unittest.TestCase
methods (Test) methods (Test)
% Test methods % Test methods
function misim_initialization(tc) function misim_initialization(tc)
% randomly create 2-3 constraint geometries % randomly create 2-3 obstacles
nGeom = 1 + randi(2); nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
tc.constraintGeometries = cell(nGeom, 1); tc.obstacles = cell(nGeom, 1);
for ii = 1:size(tc.constraintGeometries, 1) for ii = 1:size(tc.obstacles, 1)
% Instantiate a rectangular prism constraint that spans the % Instantiate a rectangular prism obstacle
% domain's height tc.obstacles{ii, 1} = rectangularPrism;
tc.constraintGeometries{ii, 1} = rectangularPrismConstraint;
% Randomly come up with constraint geometries until they % Randomly come up with dimensions until they
% fit within the domain % fit within the domain
candidateMinCorner = -Inf(3, 1); candidateMinCorner = [-Inf(1, 2), 0];
candidateMaxCorner = Inf(3, 1); candidateMaxCorner = Inf(1, 3);
% make sure the obstacles don't contain the sensing objective % make sure obstacles are not too small in any dimension
obstructs = true; tooSmall = true;
while obstructs while tooSmall
% make sure the obstacles don't contain the sensing
% objective or encroach on it too much
obstructs = true;
while obstructs
% Make sure the obstacle is in the domain % Make sure the obstacle is in the domain
while any(candidateMinCorner(1:2, 1) < tc.domain.minCorner(1:2, 1)) while any(candidateMinCorner < tc.domain.minCorner)
candidateMinCorner = tc.domain.minCorner(1:3, 1) + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1); -Inf]; % random spots on the ground candidateMinCorner = tc.domain.minCorner(1:3) + [(tc.domain.maxCorner(1:2) - tc.domain.minCorner(1:2)) .* rand(1, 2), 0]; % random spots on the ground
end
while any(candidateMaxCorner > tc.domain.maxCorner)
candidateMaxCorner = [candidateMinCorner(1:2), 0] + ((tc.domain.maxCorner(1:3) - tc.domain.minCorner(1:3)) .* rand(1, 3) ./ 2); % halved to keep from being excessively large
end
% once a domain-valid obstacle has been found, make
% sure it doesn't obstruct the sensing target
if all(candidateMinCorner(1:2) <= tc.objective.groundPos) && all(candidateMaxCorner(1:2) >= tc.objective.groundPos)
% reset to try again
candidateMinCorner = [-Inf(1, 2), 0];
candidateMaxCorner = Inf(1, 3);
else
obstructs = false;
end
end end
while any(candidateMaxCorner(1:3, 1) > tc.domain.maxCorner(1:3, 1)) if min(candidateMaxCorner - candidateMinCorner) >= tc.minObstacleDimension
candidateMaxCorner = [candidateMinCorner(1:2, 1); 0] + ((tc.domain.maxCorner(1:3, 1) - tc.domain.minCorner(1:3, 1)) .* rand(3, 1) ./ 2); % halved to keep from being excessively large tooSmall = false;
end
% once a domain-valid obstacle has been found, make
% sure it doesn't obstruct the sensing target
if all(candidateMinCorner(1:2, 1)' <= tc.objective.groundPos) && all(candidateMaxCorner(1:2, 1)' >= tc.objective.groundPos)
% reset to try again
candidateMinCorner = -Inf(3, 1);
candidateMaxCorner = Inf(3, 1);
else else
obstructs = false; candidateMinCorner = [-Inf(1, 2), 0];
candidateMaxCorner = Inf(1, 3);
end end
end end
@@ -94,27 +113,36 @@ classdef test_miSim < matlab.unittest.TestCase
candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner)); candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner));
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner)); candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
% Initialize constraint geometry % Initialize obstacle geometry
tc.constraintGeometries{ii, 1} = tc.constraintGeometries{ii, 1}.initialize([candidateMinCorner, candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii)); tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
end end
% Repeat this until a connected set of agent initial conditions % Repeat this until a connected set of agent initial conditions
% is found by random chance % is found by random chance
nIter = 0;
connected = false; connected = false;
while ~connected while ~connected
% Randomly place agents in the domain % Randomly place agents in the domain
for ii = 1:size(tc.agents, 1) for ii = 1:size(tc.agents, 1)
posInvalid = true; posInvalid = true;
while posInvalid while posInvalid
% Initialize the agent into a random spot in the domain % Initialize the agent into a random spot in the
candidatePos = tc.domain.random(); % domain (that is not too close to the sensing
candidateGeometry = rectangularPrismConstraint; % objective)
tc.agents{ii, 1} = tc.agents{ii, 1}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii, 1) * ones(1, 3); candidatePos + tc.collisionRanges(ii, 1) * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii)); boringInit = true;
while boringInit
candidatePos = tc.domain.random();
if norm(candidatePos(1:2) - tc.objective.groundPos) >= norm(tc.domain.footprint(4, :) - tc.domain.footprint(1, :))/2
boringInit = false;
end
end
candidateGeometry = rectangularPrism;
tc.agents{ii} = tc.agents{ii}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
% Check obstacles to confirm that none are violated % Check obstacles to confirm that none are violated
for jj = 1:size(tc.constraintGeometries, 1) for jj = 1:size(tc.obstacles, 1)
inside = false; inside = false;
if tc.constraintGeometries{jj, 1}.contains(tc.agents{ii, 1}.pos) if tc.obstacles{jj, 1}.contains(tc.agents{ii, 1}.pos)
% Found a violation, stop checking % Found a violation, stop checking
inside = true; inside = true;
break; break;
@@ -127,8 +155,8 @@ classdef test_miSim < matlab.unittest.TestCase
end end
% Create a collision geometry for this agent % Create a collision geometry for this agent
candidateGeometry = rectangularPrismConstraint; candidateGeometry = rectangularPrism;
candidateGeometry = candidateGeometry.initialize([tc.agents{ii, 1}.pos - 0.1 * ones(1, 3); tc.agents{ii, 1}.pos + 0.1 * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)); candidateGeometry = candidateGeometry.initialize([tc.agents{ii}.pos - 0.1 * ones(1, 3); tc.agents{ii}.pos + 0.1 * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
% Check previously placed agents for collisions % Check previously placed agents for collisions
for jj = 1:(ii - 1) for jj = 1:(ii - 1)
@@ -171,10 +199,11 @@ classdef test_miSim < matlab.unittest.TestCase
% Check connectivity % Check connectivity
G = graph(adjacency); G = graph(adjacency);
connected = all(conncomp(G) == 1); connected = all(conncomp(G) == 1);
nIter = nIter + 1;
end end
% Initialize the simulation % Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.constraintGeometries); tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.obstacles);
% Plot domain % Plot domain
f = tc.testClass.domain.plotWireframe; f = tc.testClass.domain.plotWireframe;
@@ -184,9 +213,9 @@ classdef test_miSim < matlab.unittest.TestCase
ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]); ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]);
zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]); zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]);
% Plot constraint geometries % Plot obstacles
for ii = 1:size(tc.testClass.constraintGeometries, 1) for ii = 1:size(tc.testClass.obstacles, 1)
tc.testClass.constraintGeometries{ii, 1}.plotWireframe(f); tc.testClass.obstacles{ii, 1}.plotWireframe(f);
end end
% Plot objective gradient % Plot objective gradient

View File

@@ -1,10 +0,0 @@
function mustBeConstraintGeometries(constraintGeometry)
validGeometries = ["rectangularPrismConstraint";];
if isa(constraintGeometry, 'cell')
for ii = 1:size(constraintGeometry, 1)
assert(isa(constraintGeometry{ii}, validGeometries), "Constraint geometry in index %d is not a valid constraint geometry class", ii);
end
else
assert(isa(constraintGeometry, validGeometries), "Constraint geometry is not a valid constraint geometry class");
end
end

View File

@@ -0,0 +1,10 @@
function mustBeGeometry(geometry)
validGeometries = ["rectangularPrism";];
if isa(geometry, 'cell')
for ii = 1:size(geometry, 1)
assert(isa(geometry{ii}, validGeometries), "Geometry in index %d is not a valid geometry class", ii);
end
else
assert(isa(geometry, validGeometries), "Geometry is not a valid geometry class");
end
end