Files
miSim/test_miSim.m

231 lines
10 KiB
Matlab

classdef test_miSim < matlab.unittest.TestCase
properties (Access = private)
testClass = miSim;
% Domain
domain = rectangularPrism;
% Obstacles
minNumObstacles = 1;
maxNumObstacles = 3;
obstacles = cell(1, 0);
minObstacleDimension = 1;
% Objective
objective = sensingObjective;
objectiveFunction = @(x, y) 0;
objectiveDiscretizationStep = 0.01;
protectedRange = 1;
% Agents
minAgents = 3;
maxAgents = 9;
agents = cell(1, 0);
% Collision
minCollisionRange = 0.1;
maxCollisionRange = 0.5;
collisionRanges = NaN;
% Communications
comRange = 5;
end
% Setup for each test
methods (TestMethodSetup)
% Generate a random domain
function tc = setDomain(tc)
% random integer-sized domain ranging from [0, 5] to [0, 25] in all dimensions
L = ceil(5 + rand * 10 + rand * 10);
tc.domain = tc.domain.initialize([zeros(1, 3); L * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
end
% Generate a random sensing objective within that domain
function tc = setSensingObjective(tc)
mu = tc.domain.minCorner;
while tc.domain.interiorDistance(mu) < tc.protectedRange
mu = tc.domain.random();
end
mu(3) = 0;
assert(tc.domain.contains(mu));
sig = [2 + rand * 2, 1; 1, 2 + rand * 2];
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1:2), sig);
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3), tc.objectiveDiscretizationStep);
end
% Instantiate agents, they will be initialized under different
% parameters in individual test cases
function tc = setAgents(tc)
for ii = 1:randi([tc.minAgents, tc.maxAgents])
tc.agents{ii, 1} = agent;
end
tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange);
end
end
methods (Test)
% Test methods
function misim_initialization(tc)
% randomly create 2-3 obstacles
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
tc.obstacles = cell(nGeom, 1);
for ii = 1:size(tc.obstacles, 1)
% Instantiate a rectangular prism obstacle
tc.obstacles{ii, 1} = rectangularPrism;
% Randomly come up with dimensions until they
% fit within the domain
candidateMinCorner = [-Inf(1, 2), 0];
candidateMaxCorner = Inf(1, 3);
% make sure obstacles are not too small in any dimension
tooSmall = true;
while tooSmall
% make sure the obstacles don't contain the sensing
% objective or encroach on it too much
obstructs = true;
while obstructs
% Make sure the obstacle is in the domain
while any(candidateMinCorner < tc.domain.minCorner)
candidateMinCorner = tc.domain.minCorner(1:3) + [(tc.domain.maxCorner(1:2) - tc.domain.minCorner(1:2)) .* rand(1, 2), 0]; % random spots on the ground
end
while any(candidateMaxCorner > tc.domain.maxCorner)
candidateMaxCorner = [candidateMinCorner(1:2), 0] + ((tc.domain.maxCorner(1:3) - tc.domain.minCorner(1:3)) .* rand(1, 3) ./ 2); % halved to keep from being excessively large
end
% once a domain-valid obstacle has been found, make
% sure it doesn't obstruct the sensing target
if all(candidateMinCorner(1:2) <= tc.objective.groundPos) && all(candidateMaxCorner(1:2) >= tc.objective.groundPos)
% reset to try again
candidateMinCorner = [-Inf(1, 2), 0];
candidateMaxCorner = Inf(1, 3);
else
obstructs = false;
end
end
if min(candidateMaxCorner - candidateMinCorner) >= tc.minObstacleDimension
tooSmall = false;
else
candidateMinCorner = [-Inf(1, 2), 0];
candidateMaxCorner = Inf(1, 3);
end
end
% Reduce infinite dimensions to the domain
candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner));
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
% Initialize obstacle geometry
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
end
% Repeat this until a connected set of agent initial conditions
% is found by random chance
nIter = 0;
connected = false;
while ~connected
% Randomly place agents in the domain
for ii = 1:size(tc.agents, 1)
posInvalid = true;
while posInvalid
% Initialize the agent into a random spot in the
% domain (that is not too close to the sensing
% objective)
boringInit = true;
while boringInit
candidatePos = tc.domain.random();
if norm(candidatePos(1:2) - tc.objective.groundPos) >= norm(tc.domain.footprint(4, :) - tc.domain.footprint(1, :))/2
boringInit = false;
end
end
candidateGeometry = rectangularPrism;
tc.agents{ii} = tc.agents{ii}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
% Check obstacles to confirm that none are violated
for jj = 1:size(tc.obstacles, 1)
inside = false;
if tc.obstacles{jj, 1}.contains(tc.agents{ii, 1}.pos)
% Found a violation, stop checking
inside = true;
break;
end
end
% Agent is inside obstacle, try again
if inside
continue;
end
% Create a collision geometry for this agent
candidateGeometry = rectangularPrism;
candidateGeometry = candidateGeometry.initialize([tc.agents{ii}.pos - 0.1 * ones(1, 3); tc.agents{ii}.pos + 0.1 * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
% Check previously placed agents for collisions
for jj = 1:(ii - 1)
% Check if previously defined agents collide with
% this one
colliding = false;
if candidateGeometry.contains(tc.agents{jj, 1}.pos)
% Found a violation, stop checking
colliding = true;
break;
end
end
% Agent is colliding with another, try again
if ii ~= 1 && colliding
continue;
end
% Allow to proceed since no obstacle/collision
% violations were found
posInvalid = false;
end
end
% Collect all agent positions
posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false);
posArray = reshape([posArray{:}], size(tc.agents, 1), 3);
% Communications checks
adjacency = false(size(tc.agents, 1), size(tc.agents, 1));
for ii = 1:size(tc.agents, 1)
% Compute distance from each to all agents
for jj = 1:(size(tc.agents, 1))
if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange
adjacency(ii, jj) = true;
end
end
end
% Check connectivity
G = graph(adjacency);
connected = all(conncomp(G) == 1);
nIter = nIter + 1;
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.obstacles);
% Plot domain
f = tc.testClass.domain.plotWireframe;
% Set plotting limits to focus on the domain
xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]);
ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]);
zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]);
% Plot obstacles
for ii = 1:size(tc.testClass.obstacles, 1)
tc.testClass.obstacles{ii, 1}.plotWireframe(f);
end
% Plot objective gradient
f = tc.testClass.objective.plot(f);
% Plot agents and their collision geometries
for ii = 1:size(tc.testClass.agents, 1)
f = tc.testClass.agents{ii, 1}.plot(f);
f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f);
end
end
end
end