Files
miSim/test/test_miSim.m
2026-01-14 20:33:44 -08:00

730 lines
39 KiB
Matlab

classdef test_miSim < matlab.unittest.TestCase
properties (Access = private)
% System under test
testClass = miSim;
% Debug
makeVideo = true; % disable video writing for big performance increase
makePlots = true; % disable plotting for big performance increase (also disables video)
plotCommsGeometry = false; % disable plotting communications geometries
% Sim
maxIter = 50;
timestep = 0.05;
% Domain
domain = rectangularPrism; % domain geometry
minDimension = 10;
minAlt = 1; % minimum allowed agent altitude
% Obstacles
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
maxNumObstacles = 3; % Maximum number of obstacles to be randomly generated
minObstacleSize = 1; % Minimum size of a randomly generated obstacle
maxObstacleSize = 6; % Maximum size of a randomly generated obstacle
obstacles = cell(1, 0);
% Objective
discretizationStep = 0.01; % Step at which the objective function is solved in X and Y space
protectedRange = 1; % Minimum distance between the sensing objective and the edge of the domain
objective = sensingObjective;
% Agents
initialStepSize = 0.2; % gradient ascent step size at the first iteration. Decreases linearly to 0 based on maxIter.
minAgents = 3; % Minimum number of agents to be randomly generated
maxAgents = 4; % Maximum number of agents to be randomly generated
agents = cell(0, 1);
% Collision
minCollisionRange = 0.1; % Minimum randomly generated collision geometry size
maxCollisionRange = 0.5; % Maximum randomly generated collision geometry size
collisionRanges = NaN;
% Sensing
betaDistMin = 3;
betaDistMax = 15;
betaTiltMin = 3;
betaTiltMax = 15;
alphaDistMin = 2.5;
alphaDistMax = 3;
alphaTiltMin = 15; % degrees
alphaTiltMax = 30; % degrees
sensor = sigmoidSensor;
% Communications
minCommsRange = 3; % Minimum randomly generated collision geometry size
maxCommsRange = 5; % Maximum randomly generated collision geometry size
commsRanges = NaN;
% Constraints
barrierGain = 100;
barrierExponent = 3;
end
% Setup for each test
methods (TestMethodSetup)
% Generate a random domain
function tc = setDomain(tc)
% random integer-dimensioned cubic domain
tc.domain = tc.domain.initializeRandom(REGION_TYPE.DOMAIN, "Domain", tc.minDimension);
% Random bivariate normal PDF objective
tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.discretizationStep, tc.protectedRange);
end
% Instantiate agents
function tc = setAgents(tc)
% Agents will be initialized under different parameters in individual test cases
% Instantiate a random number of agents according to parameters
for ii = 1:randi([tc.minAgents, tc.maxAgents])
tc.agents{ii, 1} = agent;
end
% Random collision ranges for each agent
tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange);
% Random commuunications ranges for each agent
tc.commsRanges = tc.minCommsRange + rand(size(tc.agents, 1), 1) * (tc.maxCommsRange - tc.minCommsRange);
end
end
methods (Test)
% Test methods
function misim_initialization(tc)
% randomly create obstacles
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
tc.obstacles = cell(nGeom, 1);
% Iterate over obstacles to initialize
for ii = 1:size(tc.obstacles, 1)
badCandidate = true;
while badCandidate
% Instantiate a rectangular prism obstacle inside the domain
tc.obstacles{ii} = rectangularPrism;
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt);
% Check if the obstacle collides with an existing obstacle
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
badCandidate = false;
end
end
end
% Add agents individually, ensuring that each addition does not
% invalidate the initialization setup
for ii = 1:size(tc.agents, 1)
initInvalid = true;
while initInvalid
candidatePos = [tc.domain.objective.groundPos, 0];
% Generate a random position for the agent based on
% existing agent positions
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
% domain
if ~tc.domain.contains(candidatePos)
continue;
end
% Make sure that the candidate position does not crowd
% the sensing objective and create boring scenarios
if agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
continue;
end
% Make sure that there exist unobstructed lines of sight at
% appropriate ranges to form a connected communications
% graph between the agents
connections = false(1, ii - 1);
for jj = 1:(ii - 1)
if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange
% Check new agent position against all existing
% agent positions for communications range
connections(jj) = true;
for kk = 1:size(tc.obstacles, 1)
if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos)
connections(jj) = false;
end
end
end
end
% New agent must be connected to an existing agent to
% be valid
if ii ~= 1 && ~any(connections)
continue;
end
% Initialize candidate agent collision geometry
candidateGeometry = rectangularPrism;
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION);
% Initialize candidate agent sensor model
tc.sensor = tc.sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize candidate agent
newAgent = tc.agents{ii}.initialize(candidatePos, candidateGeometry, tc.sensor, tc.comRange, tc.maxIter, tc.initialStepSize);
% Make sure candidate agent doesn't collide with
% domain
violation = false;
for jj = 1:size(newAgent.collisionGeometry.vertices, 1)
% Check if collision geometry exits domain
if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3))
violation = true;
break;
end
end
if violation
continue;
end
% Make sure candidate doesn't collide with obstacles
violation = false;
for kk = 1:size(tc.obstacles, 1)
if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry)
violation = true;
break;
end
end
if violation
continue;
end
% Make sure candidate doesn't collide with existing
% agents
violation = false;
for kk = 1:(ii - 1)
if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry)
violation = true;
break;
end
end
if violation
continue;
end
% Candidate agent is valid, store to pass in to sim
initInvalid = false;
tc.agents{ii} = newAgent;
end
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
end
function misim_run(tc)
% randomly create obstacles
nGeom = tc.minNumObstacles + randi(tc.maxNumObstacles - tc.minNumObstacles);
tc.obstacles = cell(nGeom, 1);
% Iterate over obstacles to initialize
for ii = 1:size(tc.obstacles, 1)
badCandidate = true;
while badCandidate
% Instantiate a rectangular prism obstacle inside the domain
tc.obstacles{ii} = rectangularPrism;
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt);
% Check if the obstacle collides with an existing obstacle
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
badCandidate = false;
end
end
end
% Add agents individually, ensuring that each addition does not
% invalidate the initialization setup
for ii = 1:size(tc.agents, 1)
initInvalid = true;
while initInvalid
candidatePos = [tc.domain.objective.groundPos, 0];
% Generate a random position for the agent based on
% existing agent positions
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
% domain
if ~tc.domain.contains(candidatePos)
continue;
end
% Make sure that the candidate position does not crowd
% the sensing objective and create boring scenarios
if agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
continue;
end
% Make sure that there exist unobstructed lines of sight at
% appropriate ranges to form a connected communications
% graph between the agents
connections = false(1, ii - 1);
for jj = 1:(ii - 1)
if norm(tc.agents{jj}.pos - candidatePos) <= tc.comRange
% Check new agent position against all existing
% agent positions for communications range
connections(jj) = true;
for kk = 1:size(tc.obstacles, 1)
if tc.obstacles{kk}.containsLine(tc.agents{jj}.pos, candidatePos)
connections(jj) = false;
end
end
end
end
% New agent must be connected to an existing agent to
% be valid
if ii ~= 1 && ~any(connections)
continue;
end
% Initialize candidate agent collision geometry
% candidateGeometry = rectangularPrism;
% candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION);
candidateGeometry = spherical;
candidateGeometry = candidateGeometry.initialize(candidatePos, tc.collisionRanges(ii), REGION_TYPE.COLLISION);
% Initialize candidate agent sensor model
tc.sensor = tc.sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize candidate agent
newAgent = tc.agents{ii}.initialize(candidatePos, candidateGeometry, tc.sensor, tc.comRange, tc.maxIter, tc.initialStepSize);
% Make sure candidate agent doesn't collide with
% domain
violation = false;
for jj = 1:size(newAgent.collisionGeometry.vertices, 1)
% Check if collision geometry exits domain
if ~tc.domain.contains(newAgent.collisionGeometry.vertices(jj, 1:3))
violation = true;
break;
end
end
if violation
continue;
end
% Make sure candidate doesn't collide with obstacles
violation = false;
for kk = 1:size(tc.obstacles, 1)
if geometryIntersects(tc.obstacles{kk}, newAgent.collisionGeometry)
violation = true;
break;
end
end
if violation
continue;
end
% Make sure candidate doesn't collide with existing
% agents
violation = false;
for kk = 1:(ii - 1)
if geometryIntersects(tc.agents{kk}.collisionGeometry, newAgent.collisionGeometry)
violation = true;
break;
end
end
if violation
continue;
end
% Candidate agent is valid, store to pass in to sim
initInvalid = false;
tc.agents{ii} = newAgent;
end
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Write out parameters
tc.testClass.writeParams();
% Run simulation loop
tc.testClass = tc.testClass.run();
end
function test_basic_partitioning(tc)
% place agents a fixed distance +/- X from the domain's center
d = 1;
% Initialize agent collision geometry
tc.agents = {agent; agent; agent};
geometry1 = spherical;
geometry2 = geometry1;
geometry3 = geometry1;
geometry1 = geometry1.initialize(tc.domain.center + [d, 0, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - [d, 0, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION);
geometry3 = geometry3.initialize(tc.domain.center - [0, d, 0], tc.collisionRanges(3), REGION_TYPE.COLLISION);
% Initialize agent sensor model with fixed parameters
tc.sensor = tc.sensor.initialize(tc.domain.maxCorner(3) / 2, 9, 22.5, 9);
% Initialize agents
tc.commsRanges = 3 * d * ones(size(tc.agents));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], geometry3, tc.sensor, tc.commsRanges(3), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.obstacles = cell(0, 1);
tc.makePlots = false;
tc.makeVideo = false;
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
centerIdx = floor(size(tc.testClass.partitioning, 1) / 2);
tc.verifyEqual(tc.testClass.partitioning(centerIdx, centerIdx:(centerIdx + 2)), [2, 3, 1]); % all three near center
tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all')); % more non-assignments than partition 1 assignments
tc.verifyLessThan(sum(tc.testClass.partitioning == 2, 'all'), sum(tc.testClass.partitioning == 1, 'all')); % more partition 1 assignments than partition 2 assignments
tc.verifyLessThan(sum(tc.testClass.partitioning == 3, 'all'), sum(tc.testClass.partitioning == 2, 'all')); % more partition 3 assignments than partition 2 assignments
tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1; 2; 3;]);
end
function test_single_partition(tc)
% Initialize agent collision geometry
tc.agents = {agent};
geometry1 = spherical;
geometry1 = geometry1.initialize([tc.domain.center(1:2), 3], tc.collisionRanges(1), REGION_TYPE.COLLISION);
% Initialize agent sensor model with fixed parameters
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 20, 3);
% Initialize agents
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.obstacles = cell(0, 1);
tc.makePlots = false;
tc.makeVideo = false;
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
close(tc.testClass.fPerf);
tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1]);
tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all'));
end
function test_single_agent_gradient_ascent(tc)
% make basic domain
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([7, 6]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent};
geometry1 = rectangularPrism;
geometry1 = geometry1.initialize([[tc.domain.center(1:2)-tc.domain.dimensions(1)/4, 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2)-tc.domain.dimensions(1)/4, 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
% Initialize agent sensor model with fixed parameters
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 20, 3);
% Initialize agents
tc.maxIter = 75;
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2)-tc.domain.dimensions(1)/4, 3], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.obstacles = cell(0, 1);
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Run the simulation
tc.testClass = tc.testClass.run();end
function test_collision_avoidance(tc)
% No obstacles
% Fixed agent initial conditions
% Exaggerated large collision geometries to test CA
% make basic domain
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([3, 7]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent; agent};
tc.collisionRanges = 1.5 * ones(size(tc.agents));
d = [2.5, 0, 0];
geometry1 = spherical;
geometry2 = spherical;
geometry1 = geometry1.initialize(tc.domain.center + d, tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - d, tc.collisionRanges(2), REGION_TYPE.COLLISION);
% Initialize agent sensor model with fixed parameters
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3);
% Initialize agents
tc.maxIter = 25;
tc.commsRanges = 5 * ones(size(tc.agents));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + d, geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d, geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.obstacles = cell(0, 1);
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Run the simulation
tc.testClass.run();
end
function test_obstacle_avoidance(tc)
% Right now, the communications constraint is violated here
% Fixed single obstacle
% Fixed two agents initial conditions
% Exaggerated large collision geometries
% make basic domain
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5.2195]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent; agent;};
tc.collisionRanges = 1.1 * ones(size(tc.agents));
d = [3, 0, 0];
yOffset = 1;
% choice of 0 leads to the agents getting stuck attempting to go around the obstacle on both sides
% choice of 1 leads to one agent easily going around while the other gets stuck and the communications link is broken
geometry1 = spherical;
geometry2 = geometry1;
geometry1 = geometry1.initialize(tc.domain.center - d + [0, tc.collisionRanges(1) * 1.1 - yOffset, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - d - [0, tc.collisionRanges(2) * 1.1 + yOffset, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION);
% Initialize agent sensor model with fixed parameters
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3);
% Initialize obstacles
obstacleLength = 1;
tc.obstacles{1} = rectangularPrism;
tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, tc.minAlt; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1");
% Initialize agents
tc.commsRanges = (2 * tc.collisionRanges(1) + obstacleLength) * 0.9 * ones(size(tc.agents)); % defined such that they cannot go around the obstacle on both sides
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - d + [0, tc.collisionRanges(1) * 1.1 - yOffset, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d - [0, tc.collisionRanges(2) *1.1 + yOffset, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Run the simulation
tc.testClass.run();
end
function test_communications_constraint(tc)
% No obstacles
% Fixed two agents initial conditions
% Negligible collision geometries
% Non-standard domain with two objectives that will try to pull the
% agents apart
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([2, 8; 8, 8]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent; agent;};
tc.collisionRanges = .25 * ones(size(tc.agents));
d = [1, 0, 0];
geometry1 = spherical;
geometry2 = geometry1;
geometry1 = geometry1.initialize(tc.domain.center + d, tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - d, tc.collisionRanges(2), REGION_TYPE.COLLISION);
% Initialize agent sensor model
tc.sensor = sigmoidSensor;
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3);
% Initialize obstacles
tc.obstacles = {};
% Initialize agents
tc.maxIter = 50;
tc.commsRanges = 4 * ones(size(tc.agents)); % defined such that they cannot reach their objective without breaking connectivity
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + d, geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d, geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Run the simulation
tc.testClass = tc.testClass.run();
end
function test_obstacle_permits_comms_LOS(tc)
% Fixed single obstacle
% Fixed two agents initial conditions
% Exaggerated large communications radius
% make basic domain
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent; agent;};
tc.collisionRanges = .25 * ones(size(tc.agents));
d = 2;
geometry1 = spherical;
geometry2 = geometry1;
geometry1 = geometry1.initialize(tc.domain.center - [d, 0, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry2.initialize(tc.domain.center - [0, d, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION);
% Initialize agent sensor model
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3);
% Initialize agents
tc.maxIter = 125;
tc.commsRanges = 5 * ones(size(tc.agents));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - [d, 0, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [0, d, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
% Initialize obstacles
obstacleLength = 1.5;
tc.obstacles{1} = rectangularPrism;
tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, 0; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1");
% Initialize the simulation
tc.minAlt = 0;
tc.makePlots = false;
tc.makeVideo = false;
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Communications link should be established
tc.assertEqual(tc.testClass.adjacency, logical(true(2)));
end
function test_LNA_case_1(tc)
% based on example in meeting
% no obstacles
% fixed 5 agents initial conditions
% unit communicaitons radius
% negligible collision radius
% make basic domain
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3);tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent; agent; agent; agent; agent;};
tc.collisionRanges = .01 * ones(size(tc.agents));
d = 1;
geometry5 = spherical;
geometry1 = geometry5.initialize(tc.domain.center + [d, 0, 0], tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry5.initialize(tc.domain.center, tc.collisionRanges(2), REGION_TYPE.COLLISION);
geometry3 = geometry5.initialize(tc.domain.center + [-d, d, 0], tc.collisionRanges(3), REGION_TYPE.COLLISION);
geometry4 = geometry5.initialize(tc.domain.center + [-2*d, d, 0], tc.collisionRanges(4), REGION_TYPE.COLLISION);
geometry5 = geometry5.initialize(tc.domain.center + [0, d, 0], tc.collisionRanges(5), REGION_TYPE.COLLISION);
% Initialize agent sensor model
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3);
% Initialize agents
tc.maxIter = 125;
tc.commsRanges = ones(size(tc.agents));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center, geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [-d, d, 0], geometry3, tc.sensor, tc.commsRanges(3), tc.maxIter, tc.initialStepSize);
tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [-2*d, d, 0], geometry4, tc.sensor, tc.commsRanges(4), tc.maxIter, tc.initialStepSize);
tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, d, 0], geometry5, tc.sensor, tc.commsRanges(5), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.minAlt = 0;
tc.makePlots = false;
tc.makeVideo = false;
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Constraint adjacency matrix defined by LNA should be as follows
tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ...
[ 1, 1, 0, 0, 0; ...
1, 1, 0, 0, 1; ...
0, 0, 1, 1, 1;
0, 0, 1, 1, 0;
0, 1, 1, 0, 1;]));
end
function test_LNA_case_2(tc)
% based on example in paper Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information
% No obstacles
% Fixed 7 agents initial conditions
% unitary communicaitons radius
% negligible collision radius
% make basic domain
tc.minDimension = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); tc.minDimension* ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(objectiveFunctionWrapper([8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
tc.agents = {agent; agent; agent; agent; agent; agent; agent;};
tc.collisionRanges = .01 * ones(size(tc.agents));
d = 1;
geometry7 = spherical;
geometry1 = geometry7.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], tc.collisionRanges(1), REGION_TYPE.COLLISION);
geometry2 = geometry7.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], tc.collisionRanges(2), REGION_TYPE.COLLISION);
geometry3 = geometry7.initialize(tc.domain.center + [0.9 * d, 0, 0], tc.collisionRanges(3), REGION_TYPE.COLLISION);
geometry4 = geometry7.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], tc.collisionRanges(4), REGION_TYPE.COLLISION);
geometry5 = geometry7.initialize(tc.domain.center + [0, 0.9 * d, 0], tc.collisionRanges(5), REGION_TYPE.COLLISION);
geometry6 = geometry7.initialize(tc.domain.center, tc.collisionRanges(6), REGION_TYPE.COLLISION);
geometry7 = geometry7.initialize(tc.domain.center + [d/2, d/2, 0], tc.collisionRanges(7), REGION_TYPE.COLLISION);
% Initialize agent sensor model
tc.sensor = tc.sensor.initialize(tc.minDimension / 2, 3, 15, 3);
% Initialize agents
tc.maxIter = 125;
tc.commsRanges = d * ones(size(tc.agents));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], geometry1, tc.sensor, tc.commsRanges(1), tc.maxIter, tc.initialStepSize);
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], geometry2, tc.sensor, tc.commsRanges(2), tc.maxIter, tc.initialStepSize);
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [0.9 * d, 0, 0], geometry3, tc.sensor, tc.commsRanges(3), tc.maxIter, tc.initialStepSize);
tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], geometry4, tc.sensor, tc.commsRanges(4), tc.maxIter, tc.initialStepSize);
tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, 0.9 * d, 0], geometry5, tc.sensor, tc.commsRanges(5), tc.maxIter, tc.initialStepSize);
tc.agents{6} = tc.agents{6}.initialize(tc.domain.center, geometry6, tc.sensor, tc.commsRanges(6), tc.maxIter, tc.initialStepSize);
tc.agents{7} = tc.agents{7}.initialize(tc.domain.center + [d/2, d/2, 0], geometry7, tc.sensor, tc.commsRanges(7), tc.maxIter, tc.initialStepSize);
% Initialize the simulation
tc.minAlt = 0;
tc.makePlots = false;
tc.makeVideo = false;
tc.testClass = tc.testClass.initialize(tc.domain, tc.agents, tc.barrierGain, tc.barrierExponent, tc.minAlt, tc.timestep, tc.maxIter, tc.obstacles, tc.makePlots, tc.makeVideo);
% Constraint adjacency matrix defined by LNA should be as follows
tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ...
[ 1, 1, 0, 0, 0, 0, 0; ...
1, 1, 0, 0, 1, 0, 0; ...
0, 0, 1, 1, 0, 0, 0;
0, 0, 1, 1, 0, 1, 0;
0, 1, 0, 0, 1, 1, 0;
0, 0, 0, 1, 1, 1, 1;
0, 0, 0, 0, 0, 1, 1; ]));
end
end
methods
function c = obstacleCollisionCheck(~, obstacles, obstacle)
% Check if the obstacle intersects with any other obstacles
c = false;
for ii = 1:size(obstacles, 1)
if geometryIntersects(obstacles{ii}, obstacle)
c = true;
end
end
end
end
end