Files
miSim/miSim.m
2025-10-27 23:23:11 -07:00

268 lines
9.6 KiB
Matlab

classdef miSim
% multiagent interconnection simulation
% Simulation parameters
properties (SetAccess = private, GetAccess = public)
timestep = NaN; % delta time interval for simulation iterations
maxIter = NaN; % maximum number of simulation iterations
domain = rectangularPrism;
objective = sensingObjective;
obstacles = cell(0, 1); % geometries that define obstacles within the domain
agents = cell(0, 1); % agents that move within the domain
adjacency = NaN; % Adjacency matrix representing communications network graph
end
properties (Access = private)
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist.mp4')));
connectionsPlot; % objects for lines connecting agents in spatial plots
graphPlot; % objects for abstract network graph plot
end
methods (Access = public)
function [obj, f] = initialize(obj, domain, objective, agents, timestep, maxIter, obstacles)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
domain (1, 1) {mustBeGeometry};
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
agents (:, 1) cell {mustBeAgents};
timestep (:, 1) double = 0.05;
maxIter (:, 1) double = 1000;
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Define simulation time parameters
obj.timestep = timestep;
obj.maxIter = maxIter;
% Define domain
obj.domain = domain;
% Add geometries representing obstacles within the domain
obj.obstacles = obstacles;
% Define objective
obj.objective = objective;
% Define agents
obj.agents = agents;
% Compute adjacency matrix
obj = obj.updateAdjacency();
% Set up initial plot
% Set up axes arrangement
% Plot domain
[obj.domain, f] = obj.domain.plotWireframe();
% Set plotting limits to focus on the domain
xlim([obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
ylim([obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim([obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
% Plot obstacles
for ii = 1:size(obj.obstacles, 1)
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(f);
end
% Plot objective gradient
f = obj.objective.plot(f);
% Plot agents and their collision geometries
for ii = 1:size(obj.agents, 1)
[obj.agents{ii}, f] = obj.agents{ii}.plot(f);
end
% Plot communication links
[obj, f] = obj.plotConnections(f);
% Plot abstract network graph
[obj, f] = obj.plotGraph(f);
end
function [obj, f] = run(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Create axes if they don't already exist
f = firstPlotSetup(f);
% Set up times to iterate over
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
% Start video writer
obj.v.FrameRate = 1/obj.timestep;
obj.v.Quality = 90;
obj.v.open();
for ii = 1:size(times, 1)
% Display current sim time
t = times(ii);
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
% Iterate over agents to simulate their motion
for jj = 1:size(obj.agents, 1)
obj.agents{jj} = obj.agents{jj}.run(obj.objective.objectiveFunction, obj.domain);
end
% Update adjacency matrix
obj = obj.updateAdjacency;
% Update plots
[obj, f] = obj.updatePlots(f);
% Write frame in to video
I = getframe(f);
obj.v.writeVideo(I);
end
% Close video file
obj.v.close();
end
function [obj, f] = updatePlots(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Update agent positions, collision geometries
for ii = 1:size(obj.agents, 1)
obj.agents{ii}.updatePlots();
end
% The remaining updates might be possible to do in a clever way
% that moves existing lines instead of clearing and
% re-plotting, which is much better for performance boost
% Update agent connections plot
delete(obj.connectionsPlot);
[obj, f] = obj.plotConnections(f);
% Update network graph plot
delete(obj.graphPlot);
[obj, f] = obj.plotGraph(f);
drawnow;
end
function obj = updateAdjacency(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
% Initialize assuming only self-connections
A = logical(eye(size(obj.agents, 1)));
% Check lower triangle off-diagonal connections
for ii = 2:size(A, 1)
for jj = 1:(ii - 1)
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
% Make sure that obstacles don't obstruct the line
% of sight, breaking the connection
for kk = 1:size(obj.obstacles, 1)
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
A(ii, jj) = true;
end
end
end
end
end
obj.adjacency = A | A';
end
function [obj, f] = plotConnections(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Iterate over lower triangle off-diagonal region of the
% adjacency matrix to plot communications links between agents
X = []; Y = []; Z = [];
for ii = 2:size(obj.adjacency, 1)
for jj = 1:(ii - 1)
if obj.adjacency(ii, jj)
X = [X; obj.agents{ii}.pos(1), obj.agents{jj}.pos(1)];
Y = [Y; obj.agents{ii}.pos(2), obj.agents{jj}.pos(2)];
Z = [Z; obj.agents{ii}.pos(3), obj.agents{jj}.pos(3)];
end
end
end
X = X'; Y = Y'; Z = Z';
% Plot the connections
hold(f.CurrentAxes, "on");
o = plot3(X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
hold(f.CurrentAxes, "off");
% Check if this is a tiled layout figure
if strcmp(f.Children(1).Type, 'tiledlayout')
% Add to other plots
o = [o, copyobj(o(:, 1), f.Children(1).Children(2))];
o = [o, copyobj(o(:, 1), f.Children(1).Children(3))];
o = [o, copyobj(o(:, 1), f.Children(1).Children(5))];
end
obj.connectionsPlot = o;
end
function [obj, f] = plotGraph(obj, f)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Form graph from adjacency matrix
G = graph(obj.adjacency, 'omitselfloops');
% Plot graph object
obj.graphPlot = plot(f.Children(1).Children(4), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
end
end
methods (Access = private)
function validateInitialization(obj)
% Assert obstacles do not intersect with the domain
% Assert obstacles do not intersect with each other
% Assert the objective has only one maxima within the domain
% Assert the objective's sole maximum is not inaccessible due
% to the placement of an obstacle
end
function validateLoop(obj)
% Assert that agents are safely inside the domain
% Assert that agents are not in proximity to obstacles
% Assert that agents are not in proximity to each other
% Assert that agents form a connected graph
end
end
end