Files
miSim/test_miSim.m

201 lines
9.2 KiB
Matlab

classdef test_miSim < matlab.unittest.TestCase
properties (Access = private)
testClass = miSim;
% Domain
domain = rectangularPrismConstraint;
% Obstacles
constraintGeometries = cell(1, 0);
% Objective
objective = sensingObjective;
objectiveFunction = @(x, y) 0;
objectiveDiscretizationStep = 0.01;
% Agents
minAgents = 3;
maxAgents = 9;
agents = cell(1, 0);
% Collision
minCollisionRange = 0.1;
maxCollisionRange = 0.5;
collisionRanges = NaN;
% Communications
comRange = 5;
end
% Setup for each test
methods (TestMethodSetup)
% Generate a random domain
function tc = setDomain(tc)
% random integer-sized domain within [-10, 10] in all dimensions
tc.domain = tc.domain.initialize(ceil([rand * -10, rand * 10; rand * -10, rand * 10; rand * -10, rand * 10]), REGION_TYPE.DOMAIN, "Domain");
end
% Generate a random sensing objective within that domain
function tc = setSensingObjective(tc)
mu = tc.domain.random();
sig = [3, 1; 1, 4];
tc.objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu(1, 1:2), sig);
tc.objective = tc.objective.initialize(tc.objectiveFunction, tc.domain.footprint, tc.domain.minCorner(3, 1), tc.objectiveDiscretizationStep);
end
% Instantiate agents, they will be initialized under different
% parameters in individual test cases
function tc = setAgents(tc)
for ii = 1:randi([tc.minAgents, tc.maxAgents])
tc.agents{ii, 1} = agent;
end
tc.collisionRanges = tc.minCollisionRange + rand(size(tc.agents, 1), 1) * (tc.maxCollisionRange - tc.minCollisionRange);
end
end
methods (Test)
% Test methods
function misim_initialization(tc)
% randomly create 2-3 constraint geometries
nGeom = 1 + randi(2);
tc.constraintGeometries = cell(nGeom, 1);
for ii = 1:size(tc.constraintGeometries, 1)
% Instantiate a rectangular prism constraint that spans the
% domain's height
tc.constraintGeometries{ii, 1} = rectangularPrismConstraint;
% Randomly come up with constraint geometries until they
% fit within the domain
candidateMinCorner = -Inf(3, 1);
candidateMaxCorner = Inf(3, 1);
% make sure the obstacles don't contain the sensing objective
obstructs = true;
while obstructs
% Make sure the obstacle is in the domain
while any(candidateMinCorner(1:2, 1) < tc.domain.minCorner(1:2, 1))
candidateMinCorner = tc.domain.minCorner(1:3, 1) + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1); -Inf]; % random spots on the ground
end
while any(candidateMaxCorner(1:2, 1) > tc.domain.maxCorner(1:2, 1))
candidateMaxCorner = [candidateMinCorner(1:2, 1); 0] + [(tc.domain.maxCorner(1:2, 1) - tc.domain.minCorner(1:2, 1)) .* rand(2, 1) ./ 2; Inf]; % halved to keep from being excessively large
end
% once a domain-valid obstacle has been found, make
% sure it doesn't obstruct the sensing target
if all(candidateMinCorner(1:2, 1)' <= tc.objective.groundPos) && all(candidateMaxCorner(1:2, 1)' >= tc.objective.groundPos)
% reset to try again
candidateMinCorner = -Inf(3, 1);
candidateMaxCorner = Inf(3, 1);
else
obstructs = false;
end
end
% Reduce infinite dimensions to the domain
candidateMinCorner(isinf(candidateMinCorner)) = tc.domain.minCorner(isinf(candidateMinCorner));
candidateMaxCorner(isinf(candidateMaxCorner)) = tc.domain.maxCorner(isinf(candidateMaxCorner));
% Initialize constraint geometry
tc.constraintGeometries{ii, 1} = tc.constraintGeometries{ii, 1}.initialize([candidateMinCorner, candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
end
% Repeat this until a connected set of agent initial conditions
% is found by random chance
connected = false;
while ~connected
% Randomly place agents in the domain
for ii = 1:size(tc.agents, 1)
posInvalid = true;
while posInvalid
% Initialize the agent into a random spot in the domain
candidatePos = tc.domain.random();
candidateGeometry = rectangularPrismConstraint;
tc.agents{ii, 1} = tc.agents{ii, 1}.initialize(candidatePos, zeros(1, 3), eye(3), candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii, 1) * ones(1, 3); candidatePos + tc.collisionRanges(ii, 1) * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii)), ii, sprintf("Agent %d", ii));
% Check obstacles to confirm that none are violated
for jj = 1:size(tc.constraintGeometries, 1)
inside = false;
if tc.constraintGeometries{jj, 1}.contains(tc.agents{ii, 1}.pos)
% Found a violation, stop checking
inside = true;
break;
end
end
% Agent is inside obstacle, try again
if inside
continue;
end
% Create a collision geometry for this agent
candidateGeometry = rectangularPrismConstraint;
candidateGeometry = candidateGeometry.initialize([tc.agents{ii, 1}.pos - 0.1 * ones(1, 3); tc.agents{ii, 1}.pos + 0.1 * ones(1, 3)]', REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
% Check previously placed agents for collisions
for jj = 1:(ii - 1)
% Check if previously defined agents collide with
% this one
colliding = false;
if candidateGeometry.contains(tc.agents{jj, 1}.pos)
% Found a violation, stop checking
colliding = true;
break;
end
end
% Agent is colliding with another, try again
if ii ~= 1 && colliding
continue;
end
% Allow to proceed since no obstacle/collision
% violations were found
posInvalid = false;
end
end
% Collect all agent positions
posArray = arrayfun(@(x) x{1}.pos, tc.agents, 'UniformOutput', false);
posArray = reshape([posArray{:}], size(tc.agents, 1), 3);
% Communications checks
adjacency = false(size(tc.agents, 1), size(tc.agents, 1));
for ii = 1:size(tc.agents, 1)
% Compute distance from each to all agents
for jj = 1:(size(tc.agents, 1))
if norm(posArray(ii, 1:3) - posArray(jj, 1:3)) <= tc.comRange
adjacency(ii, jj) = true;
end
end
end
% Check connectivity
G = graph(adjacency);
connected = all(conncomp(G) == 1);
end
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.objective, tc.agents, tc.constraintGeometries);
% Plot domain
f = tc.testClass.domain.plotWireframe;
% Set plotting limits to focus on the domain
xlim([tc.testClass.domain.minCorner(1) - 0.5, tc.testClass.domain.maxCorner(1) + 0.5]);
ylim([tc.testClass.domain.minCorner(2) - 0.5, tc.testClass.domain.maxCorner(2) + 0.5]);
zlim([tc.testClass.domain.minCorner(3) - 0.5, tc.testClass.domain.maxCorner(3) + 0.5]);
% Plot constraint geometries
for ii = 1:size(tc.testClass.constraintGeometries, 1)
tc.testClass.constraintGeometries{ii, 1}.plotWireframe(f);
end
% Plot objective gradient
f = tc.testClass.objective.plot(f);
% Plot agents and their collision geometries
for ii = 1:size(tc.testClass.agents, 1)
f = tc.testClass.agents{ii, 1}.plot(f);
f = tc.testClass.agents{ii, 1}.collisionGeometry.plotWireframe(f);
end
end
end
end