386 lines
15 KiB
Matlab
386 lines
15 KiB
Matlab
classdef miSim
|
|
% multiagent interconnection simulation
|
|
|
|
% Simulation parameters
|
|
properties (SetAccess = private, GetAccess = public)
|
|
timestep = NaN; % delta time interval for simulation iterations
|
|
partitioningFreq = NaN; % number of simulation timesteps at which the partitioning routine is re-run
|
|
maxIter = NaN; % maximum number of simulation iterations
|
|
domain = rectangularPrism;
|
|
objective = sensingObjective;
|
|
obstacles = cell(0, 1); % geometries that define obstacles within the domain
|
|
agents = cell(0, 1); % agents that move within the domain
|
|
adjacency = NaN; % Adjacency matrix representing communications network graph
|
|
partitioning = NaN;
|
|
end
|
|
|
|
properties (Access = private)
|
|
% Plot objects
|
|
connectionsPlot; % objects for lines connecting agents in spatial plots
|
|
graphPlot; % objects for abstract network graph plot
|
|
partitionPlot; % objects for partition plot
|
|
|
|
% Indicies for various plot types in the main tiled layout figure
|
|
spatialPlotIndices = [6, 4, 3, 2];
|
|
objectivePlotIndices = [6, 4];
|
|
networkGraphIndex = 5;
|
|
partitionGraphIndex = 1;
|
|
end
|
|
|
|
methods (Access = public)
|
|
function [obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
domain (1, 1) {mustBeGeometry};
|
|
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
|
agents (:, 1) cell;
|
|
timestep (:, 1) double = 0.05;
|
|
partitoningFreq (:, 1) double = 0.25
|
|
maxIter (:, 1) double = 1000;
|
|
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
|
end
|
|
|
|
% Define simulation time parameters
|
|
obj.timestep = timestep;
|
|
obj.maxIter = maxIter;
|
|
|
|
% Define domain
|
|
obj.domain = domain;
|
|
obj.partitioningFreq = partitoningFreq;
|
|
|
|
% Add geometries representing obstacles within the domain
|
|
obj.obstacles = obstacles;
|
|
|
|
% Define objective
|
|
obj.objective = objective;
|
|
|
|
% Define agents
|
|
obj.agents = agents;
|
|
|
|
% Compute adjacency matrix
|
|
obj = obj.updateAdjacency();
|
|
|
|
% Create initial partitioning
|
|
obj = obj.partition();
|
|
|
|
% Set up initial plot
|
|
% Set up axes arrangement
|
|
% Plot domain
|
|
[obj.domain, f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
|
|
|
% Plot obstacles
|
|
for ii = 1:size(obj.obstacles, 1)
|
|
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, f);
|
|
end
|
|
|
|
% Plot objective gradient
|
|
f = obj.objective.plot(obj.objectivePlotIndices, f);
|
|
|
|
% Plot agents and their collision geometries
|
|
for ii = 1:size(obj.agents, 1)
|
|
[obj.agents{ii}, f] = obj.agents{ii}.plot(obj.spatialPlotIndices, f);
|
|
end
|
|
|
|
% Plot communication links
|
|
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
|
|
|
% Plot abstract network graph
|
|
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
|
|
|
% Plot domain partitioning
|
|
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
|
|
|
% Enforce plot limits
|
|
for ii = 1:size(obj.spatialPlotIndices, 2)
|
|
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
|
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
|
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
|
end
|
|
end
|
|
function [obj, f] = run(obj, f)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
|
end
|
|
|
|
% Create axes if they don't already exist
|
|
f = firstPlotSetup(f);
|
|
|
|
% Set up times to iterate over
|
|
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
|
partitioningTimes = times(obj.partitioningFreq:obj.partitioningFreq:size(times, 1));
|
|
|
|
% Start video writer
|
|
v = setupVideoWriter(obj.timestep);
|
|
v.open();
|
|
|
|
for ii = 1:size(times, 1)
|
|
% Display current sim time
|
|
t = times(ii);
|
|
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
|
|
|
|
% Check if it's time for new partitions
|
|
updatePartitions = false;
|
|
if ismember(t, partitioningTimes)
|
|
updatePartitions = true;
|
|
obj = obj.partition();
|
|
end
|
|
|
|
% Iterate over agents to simulate their motion
|
|
for jj = 1:size(obj.agents, 1)
|
|
obj.agents{jj} = obj.agents{jj}.run(obj.objective, obj.domain, obj.partitioning);
|
|
end
|
|
|
|
% Update adjacency matrix
|
|
obj = obj.updateAdjacency;
|
|
|
|
% Update plots
|
|
[obj, f] = obj.updatePlots(f, updatePartitions);
|
|
|
|
% Write frame in to video
|
|
I = getframe(f);
|
|
v.writeVideo(I);
|
|
end
|
|
|
|
% Close video file
|
|
v.close();
|
|
end
|
|
function obj = partition(obj)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
end
|
|
|
|
% Assess sensing performance of each agent at each sample point
|
|
% in the domain
|
|
agentPerformances = cellfun(@(x) reshape(x.sensorModel.sensorPerformance(x.pos, x.pan, x.tilt, [obj.objective.X(:), obj.objective.Y(:), zeros(size(obj.objective.X(:)))]), size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
|
agentPerformances = cat(3, agentPerformances{:});
|
|
|
|
% Get highest performance value at each point
|
|
[~, idx] = max(agentPerformances, [], 3);
|
|
|
|
% Collect agent indices in the same way
|
|
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
|
agentInds = cat(3, agentInds{:});
|
|
|
|
% Get highest performing agent's index
|
|
[m,n,~] = size(agentInds);
|
|
[i,j] = ndgrid(1:m, 1:n);
|
|
obj.partitioning = agentInds(sub2ind(size(agentInds), i, j, idx));
|
|
end
|
|
function [obj, f] = updatePlots(obj, f, updatePartitions)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
|
updatePartitions (1, 1) logical = false;
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
|
end
|
|
|
|
% Update agent positions, collision geometries
|
|
for ii = 1:size(obj.agents, 1)
|
|
obj.agents{ii}.updatePlots();
|
|
end
|
|
|
|
% The remaining updates might be possible to do in a clever way
|
|
% that moves existing lines instead of clearing and
|
|
% re-plotting, which is much better for performance boost
|
|
|
|
% Update agent connections plot
|
|
delete(obj.connectionsPlot);
|
|
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
|
|
|
|
% Update network graph plot
|
|
delete(obj.graphPlot);
|
|
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
|
|
|
|
% Update partitioning plot
|
|
if updatePartitions
|
|
delete(obj.partitionPlot);
|
|
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
|
|
end
|
|
|
|
% reset plot limits to fit domain
|
|
for ii = 1:size(obj.spatialPlotIndices, 2)
|
|
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
|
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
|
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
|
end
|
|
|
|
drawnow;
|
|
end
|
|
function obj = updateAdjacency(obj)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
end
|
|
|
|
% Initialize assuming only self-connections
|
|
A = logical(eye(size(obj.agents, 1)));
|
|
|
|
% Check lower triangle off-diagonal connections
|
|
for ii = 2:size(A, 1)
|
|
for jj = 1:(ii - 1)
|
|
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
|
|
% Make sure that obstacles don't obstruct the line
|
|
% of sight, breaking the connection
|
|
for kk = 1:size(obj.obstacles, 1)
|
|
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
|
|
A(ii, jj) = true;
|
|
end
|
|
end
|
|
% need extra handling for cases with no obstacles
|
|
if isempty(obj.obstacles)
|
|
A(ii, jj) = true;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
obj.adjacency = A | A';
|
|
end
|
|
function [obj, f] = plotConnections(obj, ind, f)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
ind (1, :) double = NaN;
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
|
end
|
|
|
|
% Iterate over lower triangle off-diagonal region of the
|
|
% adjacency matrix to plot communications links between agents
|
|
X = []; Y = []; Z = [];
|
|
for ii = 2:size(obj.adjacency, 1)
|
|
for jj = 1:(ii - 1)
|
|
if obj.adjacency(ii, jj)
|
|
X = [X; obj.agents{ii}.pos(1), obj.agents{jj}.pos(1)];
|
|
Y = [Y; obj.agents{ii}.pos(2), obj.agents{jj}.pos(2)];
|
|
Z = [Z; obj.agents{ii}.pos(3), obj.agents{jj}.pos(3)];
|
|
end
|
|
end
|
|
end
|
|
X = X'; Y = Y'; Z = Z';
|
|
|
|
% Plot the connections
|
|
if isnan(ind)
|
|
hold(f.CurrentAxes, "on");
|
|
o = plot3(f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
|
hold(f.CurrentAxes, "off");
|
|
else
|
|
hold(f.Children(1).Children(ind(1)), "on");
|
|
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
|
|
hold(f.Children(1).Children(ind(1)), "off");
|
|
end
|
|
|
|
% Copy to other plots
|
|
if size(ind, 2) > 1
|
|
for ii = 2:size(ind, 2)
|
|
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
|
end
|
|
end
|
|
|
|
obj.connectionsPlot = o;
|
|
end
|
|
function [obj, f] = plotPartitions(obj, ind, f)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
ind (1, :) double = NaN;
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
|
end
|
|
|
|
if isnan(ind)
|
|
hold(f.CurrentAxes, 'on');
|
|
o = imagesc(f.CurrentAxes, obj.partitioning);
|
|
hold(f.CurrentAxes, 'off');
|
|
else
|
|
hold(f.Children(1).Children(ind(1)), 'on');
|
|
o = imagesc(f.Children(1).Children(ind(1)), obj.partitioning);
|
|
hold(f.Children(1).Children(ind(1)), 'on');
|
|
if size(ind, 2) > 1
|
|
for ii = 2:size(ind, 2)
|
|
o = [o, copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
|
end
|
|
end
|
|
end
|
|
obj.partitionPlot = o;
|
|
|
|
end
|
|
function [obj, f] = plotGraph(obj, ind, f)
|
|
arguments (Input)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
ind (1, :) double = NaN;
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
|
end
|
|
arguments (Output)
|
|
obj (1, 1) {mustBeA(obj, 'miSim')};
|
|
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
|
end
|
|
|
|
% Form graph from adjacency matrix
|
|
G = graph(obj.adjacency, 'omitselfloops');
|
|
|
|
% Plot graph object
|
|
if isnan(ind)
|
|
hold(f.CurrentAxes, 'on');
|
|
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
|
hold(f.CurrentAxes, 'off');
|
|
else
|
|
hold(f.Children(1).Children(ind(1)), 'on');
|
|
o = plot(f.Children(1).Children(ind(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
|
|
hold(f.Children(1).Children(ind(1)), 'off');
|
|
if size(ind, 2) > 1
|
|
for ii = 2:size(ind, 2)
|
|
o = [o; copyobj(o(1), f.Children(1).Children(ind(ii)))];
|
|
end
|
|
end
|
|
end
|
|
obj.graphPlot = o;
|
|
end
|
|
end
|
|
|
|
methods (Access = private)
|
|
function validateInitialization(obj)
|
|
% Assert obstacles do not intersect with the domain
|
|
|
|
% Assert obstacles do not intersect with each other
|
|
|
|
% Assert the objective has only one maxima within the domain
|
|
|
|
% Assert the objective's sole maximum is not inaccessible due
|
|
% to the placement of an obstacle
|
|
|
|
end
|
|
function validateLoop(obj)
|
|
% Assert that agents are safely inside the domain
|
|
|
|
% Assert that agents are not in proximity to obstacles
|
|
|
|
% Assert that agents are not in proximity to each other
|
|
|
|
% Assert that agents form a connected graph
|
|
|
|
|
|
end
|
|
end
|
|
end |