Compare commits
53 Commits
more-clean
...
c47b7229ba
| Author | SHA1 | Date | |
|---|---|---|---|
| c47b7229ba | |||
| 02189baaab | |||
| af6a0447a8 | |||
| 62e015da42 | |||
| ddecf63d68 | |||
| 591430ad8a | |||
| 1e7540226e | |||
| 4fe897455d | |||
| 7d1154d028 | |||
| 16673a437e | |||
| 6403e7cbcc | |||
| 066acd0949 | |||
| 8dfa0c337a | |||
| 492c5c2140 | |||
| 06f6af1511 | |||
| c59b96f547 | |||
| 4735c2b77b | |||
| d6a9c4ac06 | |||
| fa8da50db1 | |||
| 61cdb96102 | |||
| 1d11ac4e90 | |||
| 843e5ba574 | |||
| 50eaad9504 | |||
| 14e372ae55 | |||
| 8315b6c511 | |||
| 4fa942564a | |||
| 6632c9885d | |||
| 1fa76c7023 | |||
| 33036c95fd | |||
| 557d8fe63c | |||
| 2cd1bb8659 | |||
| 06882d2f30 | |||
| 95ea19e546 | |||
| 96c91c3988 | |||
| d70781fadc | |||
| a688e9c285 | |||
| d30fd9ccaa | |||
| bdd018e566 | |||
| 28a6bfe3de | |||
| c92ef143d1 | |||
| 6d16dfe974 | |||
| 1e0db2a46c | |||
| f9aa2eb9d4 | |||
| f296fd2803 | |||
| 7c87458b66 | |||
| 4e0f213d0c | |||
| f9f070e2d0 | |||
| 352d2ed1de | |||
| 59805dff72 | |||
| a8380985e1 | |||
| 55b69d4e33 | |||
| 779d7d2cc6 | |||
| 58d009c8fc |
@@ -1,16 +1,12 @@
|
||||
classdef agent
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
properties (SetAccess = public, GetAccess = public)
|
||||
% Identifiers
|
||||
index = NaN;
|
||||
label = "";
|
||||
|
||||
% Sensor
|
||||
sensorModel;
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
|
||||
% Guidance
|
||||
guidanceModel;
|
||||
|
||||
% State
|
||||
lastPos = NaN(1, 3); % position from previous timestep
|
||||
pos = NaN(1, 3); % current position
|
||||
@@ -20,20 +16,29 @@ classdef agent
|
||||
|
||||
% Collision
|
||||
collisionGeometry;
|
||||
barrierFunction;
|
||||
dBarrierFunction;
|
||||
|
||||
% FOV cone
|
||||
fovGeometry;
|
||||
|
||||
% Communication
|
||||
comRange = NaN;
|
||||
commsGeometry = spherical;
|
||||
lesserNeighbors = [];
|
||||
|
||||
performance = 0;
|
||||
|
||||
% Plotting
|
||||
scatterPoints;
|
||||
debug = false;
|
||||
debugFig;
|
||||
plotCommsGeometry = true;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj] = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label);
|
||||
[obj] = run(obj, sensingObjective, domain, partitioning);
|
||||
[obj] = run(obj, domain, partitioning, t, index);
|
||||
[obj, f] = plot(obj, ind, f);
|
||||
updatePlots(obj);
|
||||
end
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, guidanceModel, comRange, index, label)
|
||||
function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorModel, comRange, label, debug, plotCommsGeometry)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
pos (1, 3) double;
|
||||
@@ -6,11 +6,11 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
|
||||
pan (1, 1) double;
|
||||
tilt (1, 1) double;
|
||||
collisionGeometry (1, 1) {mustBeGeometry};
|
||||
sensorModel (1, 1) {mustBeSensor}
|
||||
guidanceModel (1, 1) {mustBeA(guidanceModel, 'function_handle')};
|
||||
comRange (1, 1) double = NaN;
|
||||
index (1, 1) double = NaN;
|
||||
sensorModel (1, 1) {mustBeSensor};
|
||||
comRange (1, 1) double;
|
||||
label (1, 1) string = "";
|
||||
debug (1, 1) logical = false;
|
||||
plotCommsGeometry (1, 1) logical = false;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
@@ -22,10 +22,57 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
|
||||
obj.tilt = tilt;
|
||||
obj.collisionGeometry = collisionGeometry;
|
||||
obj.sensorModel = sensorModel;
|
||||
obj.guidanceModel = guidanceModel;
|
||||
obj.comRange = comRange;
|
||||
obj.index = index;
|
||||
obj.label = label;
|
||||
obj.debug = debug;
|
||||
obj.plotCommsGeometry = plotCommsGeometry;
|
||||
|
||||
% Add spherical geometry based on com range
|
||||
obj.commsGeometry = obj.commsGeometry.initialize(obj.pos, comRange, REGION_TYPE.COMMS, sprintf("%s Comms Geometry", obj.label));
|
||||
|
||||
if obj.debug
|
||||
obj.debugFig = figure;
|
||||
tiledlayout(obj.debugFig, "TileSpacing", "tight", "Padding", "compact");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Objective");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Sensor Performance");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Gradient Objective");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Gradient Sensor Performance");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Sensor Performance x Gradient Objective");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Gradient Sensor Performance x Objective");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Agent Performance (C)");
|
||||
nexttile;
|
||||
axes(obj.debugFig.Children(1).Children(1));
|
||||
axis(obj.debugFig.Children(1).Children(1), "image");
|
||||
xlabel(obj.debugFig.Children(1).Children(1), "X"); ylabel(obj.debugFig.Children(1).Children(1), "Y");
|
||||
title(obj.debugFig.Children(1).Children(1), "Gradient Agent Performance (del C)");
|
||||
end
|
||||
|
||||
% Initialize FOV cone
|
||||
obj.fovGeometry = cone;
|
||||
|
||||
@@ -30,6 +30,11 @@ function [obj, f] = plot(obj, ind, f)
|
||||
% Plot collision geometry
|
||||
[obj.collisionGeometry, f] = obj.collisionGeometry.plotWireframe(ind, f);
|
||||
|
||||
% Plot communications geometry
|
||||
if obj.plotCommsGeometry
|
||||
[obj.commsGeometry, f] = obj.commsGeometry.plotWireframe(ind, f);
|
||||
end
|
||||
|
||||
% Plot FOV geometry
|
||||
[obj.fovGeometry, f] = obj.fovGeometry.plot(ind, f);
|
||||
end
|
||||
147
@agent/run.m
147
@agent/run.m
@@ -1,28 +1,155 @@
|
||||
function obj = run(obj, sensingObjective, domain, partitioning)
|
||||
function obj = run(obj, domain, partitioning, t, index)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
partitioning (:, :) double;
|
||||
t (1, 1) double;
|
||||
index (1, 1) double;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'agent')};
|
||||
end
|
||||
|
||||
% Do sensing
|
||||
[sensedValues, sensedPositions] = obj.sensorModel.sense(obj, sensingObjective, domain, partitioning);
|
||||
% Collect objective function values across partition
|
||||
partitionMask = partitioning == index;
|
||||
objectiveValues = domain.objective.values(partitionMask); % f(omega) on W_n
|
||||
|
||||
% Determine next planned position
|
||||
nextPos = obj.guidanceModel(sensedValues, sensedPositions, obj.pos);
|
||||
% Compute sensor performance across partition
|
||||
maskedX = domain.objective.X(partitionMask);
|
||||
maskedY = domain.objective.Y(partitionMask);
|
||||
zFactor = 1;
|
||||
sensorValues = obj.sensorModel.sensorPerformance(obj.pos, obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n) on W_n
|
||||
sensorValuesLower = obj.sensorModel.sensorPerformance(obj.pos - [0, 0, zFactor * domain.objective.discretizationStep], obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n - [0, 0, z]) on W_n
|
||||
sensorValuesHigher = obj.sensorModel.sensorPerformance(obj.pos + [0, 0, zFactor * domain.objective.discretizationStep], obj.pan, obj.tilt, [maskedX, maskedY, zeros(size(maskedX))]); % S_n(omega, P_n - [0, 0, z]) on W_n
|
||||
|
||||
% Put the values back into the form of the partition to enable basic operations on this data
|
||||
F = NaN(size(partitionMask));
|
||||
F(partitionMask) = objectiveValues;
|
||||
S = NaN(size(partitionMask));
|
||||
Slower = S;
|
||||
Shigher = S;
|
||||
S(partitionMask) = sensorValues;
|
||||
Slower(partitionMask) = sensorValuesLower;
|
||||
Shigher(partitionMask) = sensorValuesHigher;
|
||||
|
||||
% Find agent's performance
|
||||
C = S .* F;
|
||||
obj.performance = [obj.performance, sum(C(~isnan(C)))]; % at current Z only
|
||||
C = cat(3, Shigher, S, Slower) .* F;
|
||||
|
||||
% Compute gradient on agent's performance
|
||||
[gradCX, gradCY, gradCZ] = gradient(C, domain.objective.discretizationStep); % grad C
|
||||
gradC = cat(4, gradCX, gradCY, gradCZ);
|
||||
nGradC = vecnorm(gradC, 2, 4);
|
||||
|
||||
if obj.debug
|
||||
% Compute additional component-level values for diagnosing issues
|
||||
[gradSensorPerformanceX, gradSensorPerformanceY] = gradient(S, domain.objective.discretizationStep); % grad S_n
|
||||
[gradObjectiveX, gradObjectiveY] = gradient(F, domain.objective.discretizationStep); % grad f
|
||||
gradS = cat(3, gradSensorPerformanceX, gradSensorPerformanceY, zeros(size(gradSensorPerformanceX))); % grad S_n
|
||||
gradF = cat(3, gradObjectiveX, gradObjectiveY, zeros(size(gradObjectiveX))); % grad f
|
||||
|
||||
ii = 8;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), F./max(F, [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), S./max(S, [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), vecnorm(gradF, 2, 3)./max(vecnorm(gradF, 2, 3), [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), vecnorm(gradS, 2, 3)./max(vecnorm(gradS, 2, 3), [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), S .* vecnorm(gradF, 2, 3)./max(vecnorm(gradF, 2, 3), [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), F .* vecnorm(gradS, 2, 3)./max(vecnorm(gradS, 2, 3), [], 'all')./(max(F .* vecnorm(gradS, 2, 3)./max(vecnorm(gradS, 2, 3), [], 'all'))));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), C./max(C, [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
ii = ii - 1;
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
cla(obj.debugFig.Children(1).Children(ii));
|
||||
imagesc(obj.debugFig.Children(1).Children(ii), nGradC./max(nGradC, [], 'all'));
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
[x, y] = find(nGradC == max(nGradC, [], "all"));
|
||||
|
||||
% just pick one
|
||||
r = randi([1, size(x, 1)]);
|
||||
x = x(r); y = y(r);
|
||||
|
||||
% switch them
|
||||
temp = x;
|
||||
x = y;
|
||||
y = temp;
|
||||
|
||||
% find objective location in discrete domain
|
||||
[~, xIdx] = find(domain.objective.groundPos(1) == domain.objective.X);
|
||||
xIdx = unique(xIdx);
|
||||
[yIdx, ~] = find(domain.objective.groundPos(2) == domain.objective.Y);
|
||||
yIdx = unique(yIdx);
|
||||
for ii = 8:-1:1
|
||||
hold(obj.debugFig.Children(1).Children(ii), "on");
|
||||
% plot GA selection
|
||||
scatter(obj.debugFig.Children(1).Children(ii), x, y, 'go');
|
||||
scatter(obj.debugFig.Children(1).Children(ii), x, y, 'g+');
|
||||
% plot objective center
|
||||
scatter(obj.debugFig.Children(1).Children(ii), xIdx, yIdx, 'ro');
|
||||
scatter(obj.debugFig.Children(1).Children(ii), xIdx, yIdx, 'r+');
|
||||
hold(obj.debugFig.Children(1).Children(ii), "off");
|
||||
end
|
||||
end
|
||||
|
||||
% return now if there is no data to work with, and do not move
|
||||
if all(isnan(nGradC), 'all')
|
||||
return;
|
||||
end
|
||||
|
||||
% Use largest grad(C) value to find the direction of the next position
|
||||
[xNextIdx, yNextIdx, zNextIdx] = ind2sub(size(nGradC), find(nGradC == max(nGradC, [], 'all')));
|
||||
% switch them
|
||||
temp = xNextIdx;
|
||||
xNextIdx = yNextIdx;
|
||||
yNextIdx = temp;
|
||||
|
||||
roundingScale = 10^-log10(domain.objective.discretizationStep);
|
||||
zKey = zFactor * [1; 0; -1];
|
||||
pNext = [floor(roundingScale .* mean(unique(domain.objective.X(:, xNextIdx))))./roundingScale, floor(roundingScale .* mean(unique(domain.objective.Y(yNextIdx, :))))./roundingScale, obj.pos(3) + zKey(zNextIdx)]; % have to do some unfortunate rounding here sometimes
|
||||
|
||||
% Determine next position
|
||||
vDir = (pNext - obj.pos)./norm(pNext - obj.pos, 2);
|
||||
rate = 0.1 - 0.0004 * t; % slow down as you get closer, coming to a stop by the end
|
||||
nextPos = obj.pos + vDir * rate;
|
||||
|
||||
% Move to next position
|
||||
% (dynamics not modeled at this time)
|
||||
obj.lastPos = obj.pos;
|
||||
obj.pos = nextPos;
|
||||
|
||||
% Calculate movement
|
||||
d = obj.pos - obj.collisionGeometry.center;
|
||||
|
||||
% Reinitialize collision geometry in the new position
|
||||
d = obj.pos - obj.collisionGeometry.center;
|
||||
if isa(obj.collisionGeometry, 'rectangularPrism')
|
||||
obj.collisionGeometry = obj.collisionGeometry.initialize([obj.collisionGeometry.minCorner; obj.collisionGeometry.maxCorner] + d, obj.collisionGeometry.tag, obj.collisionGeometry.label);
|
||||
elseif isa(obj.collisionGeometry, 'spherical')
|
||||
obj.collisionGeometry = obj.collisionGeometry.initialize(obj.collisionGeometry.center + d, obj.collisionGeometry.radius, obj.collisionGeometry.tag, obj.collisionGeometry.label);
|
||||
else
|
||||
error("?");
|
||||
end
|
||||
end
|
||||
@@ -25,6 +25,17 @@ function updatePlots(obj)
|
||||
end
|
||||
end
|
||||
|
||||
% Communications geometry edges
|
||||
if obj.plotCommsGeometry
|
||||
for jj = 1:size(obj.commsGeometry.lines, 2)
|
||||
for ii = 1:size(obj.collisionGeometry.lines(:, jj), 1)
|
||||
obj.collisionGeometry.lines(ii, jj).XData = obj.collisionGeometry.lines(ii, jj).XData + deltaPos(1);
|
||||
obj.collisionGeometry.lines(ii, jj).YData = obj.collisionGeometry.lines(ii, jj).YData + deltaPos(2);
|
||||
obj.collisionGeometry.lines(ii, jj).ZData = obj.collisionGeometry.lines(ii, jj).ZData + deltaPos(3);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% Update FOV geometry surfaces
|
||||
for jj = 1:size(obj.fovGeometry.surface, 2)
|
||||
% Update each plot
|
||||
|
||||
153
@miSim/constrainMotion.m
Normal file
153
@miSim/constrainMotion.m
Normal file
@@ -0,0 +1,153 @@
|
||||
function [obj] = constrainMotion(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
if size(obj.agents, 1) < 2
|
||||
nAAPairs = 0;
|
||||
else
|
||||
nAAPairs = nchoosek(size(obj.agents, 1), 2); % unique agent/agent pairs
|
||||
end
|
||||
|
||||
agents = [obj.agents{:}];
|
||||
v = reshape(([agents.pos] - [agents.lastPos])./obj.timestep, 3, size(obj.agents, 1))';
|
||||
|
||||
% Initialize QP based on number of agents and obstacles
|
||||
nAOPairs = size(obj.agents, 1) * size(obj.obstacles, 1); % unique agent/obstacle pairs
|
||||
nADPairs = size(obj.agents, 1) * 5; % agents x (4 walls + 1 ceiling)
|
||||
nLNAPairs = sum(obj.constraintAdjacencyMatrix, 'all') - size(obj.agents, 1);
|
||||
total = nAAPairs + nAOPairs + nADPairs + nLNAPairs;
|
||||
kk = 1;
|
||||
A = zeros(total, 3 * size(obj.agents, 1));
|
||||
b = zeros(total, 1);
|
||||
|
||||
% Set up collision avoidance constraints
|
||||
h = NaN(size(obj.agents, 1));
|
||||
h(logical(eye(size(obj.agents, 1)))) = 0; % self value is 0
|
||||
for ii = 1:(size(obj.agents, 1) - 1)
|
||||
for jj = (ii + 1):size(obj.agents, 1)
|
||||
h(ii, jj) = norm(agents(ii).pos - agents(jj).pos)^2 - (agents(ii).collisionGeometry.radius + agents(jj).collisionGeometry.radius)^2;
|
||||
h(jj, ii) = h(ii, jj);
|
||||
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = -2 * (agents(ii).pos - agents(jj).pos);
|
||||
A(kk, (3 * jj - 2):(3 * jj)) = -A(kk, (3 * ii - 2):(3 * ii));
|
||||
b(kk) = obj.barrierGain * h(ii, jj)^3;
|
||||
kk = kk + 1;
|
||||
end
|
||||
end
|
||||
|
||||
hObs = NaN(size(obj.agents, 1), size(obj.obstacles, 1));
|
||||
% Set up obstacle avoidance constraints
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
for jj = 1:size(obj.obstacles, 1)
|
||||
% find closest position to agent on/in obstacle
|
||||
cPos = obj.obstacles{jj}.closestToPoint(agents(ii).pos);
|
||||
|
||||
hObs(ii, jj) = dot(agents(ii).pos - cPos, agents(ii).pos - cPos) - agents(ii).collisionGeometry.radius^2;
|
||||
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = -2 * (agents(ii).pos - cPos);
|
||||
b(kk) = obj.barrierGain * hObs(ii, jj)^3;
|
||||
|
||||
kk = kk + 1;
|
||||
end
|
||||
end
|
||||
|
||||
% Set up domain constraints (walls and ceiling only)
|
||||
% Floor constraint is implicit with an obstacle corresponding to the
|
||||
% minimum allowed altitude, but I included it anyways
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
% X minimum
|
||||
h_xMin = (agents(ii).pos(1) - obj.domain.minCorner(1)) - agents(ii).collisionGeometry.radius;
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = [-1, 0, 0];
|
||||
b(kk) = obj.barrierGain * h_xMin^3;
|
||||
kk = kk + 1;
|
||||
|
||||
% X maximum
|
||||
h_xMax = (obj.domain.maxCorner(1) - agents(ii).pos(1)) - agents(ii).collisionGeometry.radius;
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = [1, 0, 0];
|
||||
b(kk) = obj.barrierGain * h_xMax^3;
|
||||
kk = kk + 1;
|
||||
|
||||
% Y minimum
|
||||
h_yMin = (agents(ii).pos(2) - obj.domain.minCorner(2)) - agents(ii).collisionGeometry.radius;
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = [0, -1, 0];
|
||||
b(kk) = obj.barrierGain * h_yMin^3;
|
||||
kk = kk + 1;
|
||||
|
||||
% Y maximum
|
||||
h_yMax = (obj.domain.maxCorner(2) - agents(ii).pos(2)) - agents(ii).collisionGeometry.radius;
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = [0, 1, 0];
|
||||
b(kk) = obj.barrierGain * h_yMax^3;
|
||||
kk = kk + 1;
|
||||
|
||||
% Z minimum
|
||||
h_zMin = (agents(ii).pos(3) - obj.domain.minCorner(3)) - agents(ii).collisionGeometry.radius;
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = [0, 0, -1];
|
||||
b(kk) = obj.barrierGain * h_zMin^3;
|
||||
kk = kk + 1;
|
||||
|
||||
% Z maximum
|
||||
h_zMax = (obj.domain.maxCorner(2) - agents(ii).pos(2)) - agents(ii).collisionGeometry.radius;
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = [0, 0, 1];
|
||||
b(kk) = obj.barrierGain * h_zMax^3;
|
||||
kk = kk + 1;
|
||||
end
|
||||
|
||||
% Save off h function values (ignoring network constraints which may evolve in time)
|
||||
obj.h(:, obj.timestepIndex) = [h(triu(true(size(obj.agents, 1)), 1)); reshape(hObs, [], 1); h_xMin; h_xMax; h_yMin; h_yMax; h_zMin; h_zMax;];
|
||||
|
||||
% Add communication network constraints
|
||||
hComms = NaN(size(obj.agents, 1));
|
||||
hComms(logical(eye(size(obj.agents, 1)))) = 0;
|
||||
for ii = 1:(size(obj.agents, 1) - 1)
|
||||
for jj = (ii + 1):size(obj.agents, 1)
|
||||
if obj.constraintAdjacencyMatrix(ii, jj)
|
||||
hComms(ii, jj) = min([obj.agents{ii}.commsGeometry.radius, obj.agents{jj}.commsGeometry.radius])^2 - norm(agents(ii).pos - agents(jj).pos)^2;
|
||||
|
||||
A(kk, (3 * ii - 2):(3 * ii)) = 2 * (agents(ii).pos - agents(jj).pos);
|
||||
A(kk, (3 * jj - 2):(3 * jj)) = -A(kk, (3 * ii - 2):(3 * ii));
|
||||
b(kk) = obj.barrierGain * hComms(ii, jj);
|
||||
|
||||
% dVNominal = v(ii, 1:3) - v(jj, 1:3); % nominal velocities
|
||||
% h_dot_nom = -2 * (agents(ii).pos - agents(jj).pos) * dVNominal';
|
||||
% b(kk) = -h_dot_nom + obj.barrierGain * hComms(ii, jj)^3;
|
||||
|
||||
kk = kk + 1;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
% Solve QP program generated earlier
|
||||
vhat = reshape(v', 3 * size(obj.agents, 1), 1);
|
||||
H = 2 * eye(3 * size(obj.agents, 1));
|
||||
f = -2 * vhat;
|
||||
|
||||
% Update solution based on constraints
|
||||
assert(size(A,2) == size(H,1))
|
||||
assert(size(A,1) == size(b,1))
|
||||
assert(size(H,1) == length(f))
|
||||
opt = optimoptions('quadprog', 'Display', 'off');
|
||||
[vNew, ~, exitflag, m] = quadprog(sparse(H), double(f), A, b, [],[], [], [], [], opt);
|
||||
assert(exitflag == 1, sprintf('quadprog failure... %s%s', newline, m.message));
|
||||
vNew = reshape(vNew, 3, size(obj.agents, 1))';
|
||||
|
||||
if exitflag <= 0
|
||||
warning("QP failed, continuing with unconstrained solution...")
|
||||
vNew = v;
|
||||
end
|
||||
|
||||
% Update the "next position" that was previously set by unconstrained
|
||||
% GA using the constrained solution produced here
|
||||
for ii = 1:size(vNew, 1)
|
||||
obj.agents{ii}.pos = obj.agents{ii}.lastPos + vNew(ii, :) * obj.timestep;
|
||||
end
|
||||
|
||||
% Here we run this at the simulation level, but in reality there is no
|
||||
% parent level, so this would be run independently on each agent.
|
||||
% Running at the simulation level is just meant to simplify the
|
||||
% simulation
|
||||
|
||||
end
|
||||
@@ -1,20 +1,34 @@
|
||||
function obj = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
|
||||
function obj = initialize(obj, domain, objective, agents, minAlt, timestep, partitoningFreq, maxIter, obstacles, makePlots, makeVideo)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
objective (1, 1) {mustBeA(objective, 'sensingObjective')};
|
||||
agents (:, 1) cell;
|
||||
minAlt (1, 1) double = 1;
|
||||
timestep (:, 1) double = 0.05;
|
||||
partitoningFreq (:, 1) double = 0.25
|
||||
maxIter (:, 1) double = 1000;
|
||||
obstacles (:, 1) cell {mustBeGeometry} = cell(0, 1);
|
||||
makePlots(1, 1) logical = true;
|
||||
makeVideo (1, 1) logical = true;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
% enable/disable plotting and video writer
|
||||
obj.makePlots = makePlots;
|
||||
if ~obj.makePlots
|
||||
if makeVideo
|
||||
warning("makeVideo set to true, but makePlots set to false. Setting makeVideo to false.");
|
||||
makeVideo = false;
|
||||
end
|
||||
end
|
||||
obj.makeVideo = makeVideo;
|
||||
|
||||
% Define simulation time parameters
|
||||
obj.timestep = timestep;
|
||||
obj.timestepIndex = 0;
|
||||
obj.maxIter = maxIter - 1;
|
||||
|
||||
% Define domain
|
||||
@@ -24,26 +38,56 @@ function obj = initialize(obj, domain, objective, agents, timestep, partitoningF
|
||||
% Add geometries representing obstacles within the domain
|
||||
obj.obstacles = obstacles;
|
||||
|
||||
% Add an additional obstacle spanning the domain's footprint to
|
||||
% represent the minimum allowable altitude
|
||||
obj.minAlt = minAlt;
|
||||
if obj.minAlt > 0
|
||||
obj.obstacles{end + 1, 1} = rectangularPrism;
|
||||
obj.obstacles{end, 1} = obj.obstacles{end, 1}.initialize([obj.domain.minCorner; obj.domain.maxCorner(1:2), obj.minAlt], "OBSTACLE", "Minimum Altitude Domain Constraint");
|
||||
end
|
||||
|
||||
% Define objective
|
||||
obj.objective = objective;
|
||||
|
||||
% Define agents
|
||||
obj.agents = agents;
|
||||
obj.constraintAdjacencyMatrix = logical(eye(size(agents, 1)));
|
||||
|
||||
% Compute adjacency matrix
|
||||
% Set labels for agents and collision geometries in cases where they
|
||||
% were not provieded at the time of their initialization
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
% Agent
|
||||
if isempty(char(obj.agents{ii}.label))
|
||||
obj.agents{ii}.label = sprintf("Agent %d", ii);
|
||||
end
|
||||
|
||||
% Collision geometry
|
||||
if isempty(char(obj.agents{ii}.collisionGeometry.label))
|
||||
obj.agents{ii}.collisionGeometry.label = sprintf("Agent %d Collision Geometry", ii);
|
||||
end
|
||||
end
|
||||
|
||||
% Compute adjacency matrix and lesser neighbors
|
||||
obj = obj.updateAdjacency();
|
||||
obj = obj.lesserNeighbor();
|
||||
|
||||
% Set up times to iterate over
|
||||
obj.times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
|
||||
obj.partitioningTimes = obj.times(obj.partitioningFreq:obj.partitioningFreq:size(obj.times, 1));
|
||||
|
||||
% Prepare performance data store (at t = 0, all have 0 performance)
|
||||
obj.fPerf = figure;
|
||||
obj.perf = [zeros(size(obj.agents, 1) + 1, 1), NaN(size(obj.agents, 1) + 1, size(obj.partitioningTimes, 1) - 1)];
|
||||
|
||||
% Prepare h function data store
|
||||
obj.h = NaN(size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2 + size(obj.agents, 1) * size(obj.obstacles, 1) + 6, size(obj.times, 1) - 1);
|
||||
|
||||
% Create initial partitioning
|
||||
obj = obj.partition();
|
||||
|
||||
% Initialize variable that will store agent positions for trail plots
|
||||
obj.posHist = NaN(size(obj.agents, 1), obj.maxIter + 1, 3);
|
||||
obj.posHist(1:size(obj.agents, 1), 1, 1:3) = reshape(cell2mat(cellfun(@(x) x.pos, obj.agents, 'UniformOutput', false)), size(obj.agents, 1), 1, 3);
|
||||
|
||||
% Set up plots showing initialized state
|
||||
obj = obj.plot();
|
||||
end
|
||||
76
@miSim/lesserNeighbor.m
Normal file
76
@miSim/lesserNeighbor.m
Normal file
@@ -0,0 +1,76 @@
|
||||
function obj = lesserNeighbor(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
% initialize solution with self-connections only
|
||||
constraintAdjacencyMatrix = logical(eye(size(obj.agents, 1)));
|
||||
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
% Find lesser neighbors of each agent
|
||||
% Lesser neighbors of ii are jj < ii in range of ii
|
||||
lesserNeighbors = [];
|
||||
for jj = 1:(ii - 1)
|
||||
if obj.adjacency(ii, jj)
|
||||
lesserNeighbors = [lesserNeighbors, jj];
|
||||
end
|
||||
end
|
||||
obj.agents{ii}.lesserNeighbors = lesserNeighbors;
|
||||
|
||||
% Early exit for isolated agents
|
||||
if isempty(obj.agents{ii}.lesserNeighbors)
|
||||
continue
|
||||
end
|
||||
|
||||
% Focus on subgraph defined by lesser neighbors
|
||||
subgraphAdjacency = obj.adjacency(obj.agents{ii}.lesserNeighbors, obj.agents{ii}.lesserNeighbors);
|
||||
|
||||
% Find connected components in each agent's subgraph
|
||||
% TODO: rewrite this using matlab "conncomp" function?
|
||||
visited = false(size(subgraphAdjacency, 1), 1);
|
||||
components = {};
|
||||
for jj = 1:size(subgraphAdjacency, 1)
|
||||
if ~visited(jj)
|
||||
reachable = bfs(subgraphAdjacency, jj);
|
||||
visited(reachable) = true;
|
||||
components{end+1} = obj.agents{ii}.lesserNeighbors(reachable);
|
||||
end
|
||||
end
|
||||
|
||||
% Connect to the greatest index in each connected component in the
|
||||
% lesser neighborhood of this agent
|
||||
for jj = 1:size(components, 2)
|
||||
constraintAdjacencyMatrix(ii, max(components{jj})) = true;
|
||||
constraintAdjacencyMatrix(max(components{jj}), ii) = true;
|
||||
end
|
||||
end
|
||||
obj.constraintAdjacencyMatrix = constraintAdjacencyMatrix | constraintAdjacencyMatrix';
|
||||
end
|
||||
|
||||
function cComp = bfs(subgraphAdjacency, startIdx)
|
||||
n = size(subgraphAdjacency, 1);
|
||||
visited = false(1, n);
|
||||
queue = startIdx;
|
||||
cComp = startIdx;
|
||||
visited(startIdx) = true;
|
||||
|
||||
while ~isempty(queue)
|
||||
current = queue(1);
|
||||
queue(1) = [];
|
||||
|
||||
% Find all neighbors of current node in the subgraph
|
||||
neighbors = find(subgraphAdjacency(current, :));
|
||||
|
||||
for neighbor = neighbors
|
||||
if ~visited(neighbor)
|
||||
visited(neighbor) = true;
|
||||
cComp = [cComp, neighbor];
|
||||
queue = [queue, neighbor];
|
||||
end
|
||||
end
|
||||
end
|
||||
cComp = sort(cComp);
|
||||
end
|
||||
@@ -4,6 +4,7 @@ classdef miSim
|
||||
% Simulation parameters
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
timestep = NaN; % delta time interval for simulation iterations
|
||||
timestepIndex = NaN; % index of the current timestep (useful for time-indexed arrays)
|
||||
partitioningFreq = NaN; % number of simulation timesteps at which the partitioning routine is re-run
|
||||
maxIter = NaN; % maximum number of simulation iterations
|
||||
domain = rectangularPrism;
|
||||
@@ -11,10 +12,13 @@ classdef miSim
|
||||
obstacles = cell(0, 1); % geometries that define obstacles within the domain
|
||||
agents = cell(0, 1); % agents that move within the domain
|
||||
adjacency = NaN; % Adjacency matrix representing communications network graph
|
||||
constraintAdjacencyMatrix = NaN; % Adjacency matrix representing desired lesser neighbor connections
|
||||
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
||||
partitioning = NaN;
|
||||
performance = NaN; % current cumulative sensor performance
|
||||
oldMeanTotalPerf = 0;
|
||||
perf; % sensor performance timeseries array
|
||||
performance = 0; % simulation performance timeseries vector
|
||||
barrierGain = 100; % collision avoidance parameter
|
||||
minAlt = 1; % minimum allowed altitude constraint
|
||||
|
||||
fPerf; % performance plot figure
|
||||
end
|
||||
@@ -22,35 +26,50 @@ classdef miSim
|
||||
properties (Access = private)
|
||||
% Sim
|
||||
t = NaN; % current sim time
|
||||
perf; % sensor performance timeseries array
|
||||
times;
|
||||
partitioningTimes;
|
||||
|
||||
% Plot objects
|
||||
f = firstPlotSetup(); % main plotting tiled layout figure
|
||||
makePlots = true; % enable/disable simulation plotting (performance implications)
|
||||
makeVideo = true; % enable/disable VideoWriter (performance implications)
|
||||
f; % main plotting tiled layout figure
|
||||
connectionsPlot; % objects for lines connecting agents in spatial plots
|
||||
graphPlot; % objects for abstract network graph plot
|
||||
partitionPlot; % objects for partition plot
|
||||
|
||||
performancePlot; % objects for sensor performance plot
|
||||
|
||||
posHist; % data for trail plot
|
||||
trailPlot; % objects for agent trail plot
|
||||
|
||||
% Indicies for various plot types in the main tiled layout figure
|
||||
spatialPlotIndices = [6, 4, 3, 2];
|
||||
objectivePlotIndices = [6, 4];
|
||||
networkGraphIndex = 5;
|
||||
partitionGraphIndex = 1;
|
||||
|
||||
% CBF plotting
|
||||
h; % h function values
|
||||
hf; % h function plotting figure
|
||||
caPlot; % objects for collision avoidance h function plot
|
||||
obsPlot; % objects for obstacle h function plot
|
||||
domPlot; % objects for domain h function plot
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
|
||||
[obj] = run(obj);
|
||||
[obj] = lesserNeighbor(obj);
|
||||
[obj] = constrainMotion(obj);
|
||||
[obj] = partition(obj);
|
||||
[obj] = updateAdjacency(obj);
|
||||
[obj] = plot(obj);
|
||||
[obj] = plotConnections(obj);
|
||||
[obj] = plotPartitions(obj);
|
||||
[obj] = plotGraph(obj);
|
||||
[obj] = plotTrails(obj);
|
||||
[obj] = plotH(obj);
|
||||
[obj] = updatePlots(obj, updatePartitions);
|
||||
validate(obj);
|
||||
end
|
||||
methods (Access = private)
|
||||
[v] = setupVideoWriter(obj);
|
||||
|
||||
@@ -16,7 +16,13 @@ function obj = partition(obj)
|
||||
[~, idx] = max(agentPerformances, [], 3);
|
||||
|
||||
% Collect agent indices in the same way as performance
|
||||
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
|
||||
indices = 1:size(obj.agents, 1);
|
||||
agentInds = squeeze(tensorprod(indices, ones(size(obj.objective.X))));
|
||||
if size(agentInds, 1) ~= size(obj.agents, 1)
|
||||
agentInds = reshape(agentInds, [size(obj.agents, 1), size(agentInds)]); % needed for cases with 1 agent where prior squeeze is too agressive
|
||||
end
|
||||
agentInds = num2cell(agentInds, 2:3);
|
||||
agentInds = cellfun(@(x) squeeze(x), agentInds, 'UniformOutput', false);
|
||||
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
|
||||
agentInds = cat(3, agentInds{:});
|
||||
|
||||
@@ -24,18 +30,4 @@ function obj = partition(obj)
|
||||
[m, n, ~] = size(agentInds);
|
||||
[jj, kk] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
|
||||
|
||||
% Get individual agent sensor performance
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
if isnan(obj.t)
|
||||
nowIdx = 1;
|
||||
end
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
idx = obj.partitioning == ii;
|
||||
agentPerformance = squeeze(agentPerformances(:, :, ii));
|
||||
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
|
||||
end
|
||||
|
||||
% Current total performance
|
||||
obj.perf(end, nowIdx) = sum(obj.perf(1:(end - 1), nowIdx));
|
||||
end
|
||||
@@ -6,6 +6,11 @@ function obj = plot(obj)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
% fast exit when plotting is disabled
|
||||
if ~obj.makePlots
|
||||
return;
|
||||
end
|
||||
|
||||
% Plot domain
|
||||
[obj.domain, obj.f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
|
||||
|
||||
@@ -17,7 +22,7 @@ function obj = plot(obj)
|
||||
% Plot objective gradient
|
||||
obj.f = obj.domain.objective.plot(obj.objectivePlotIndices, obj.f);
|
||||
|
||||
% Plot agents and their collision geometries
|
||||
% Plot agents and their collision/communications geometries
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
[obj.agents{ii}, obj.f] = obj.agents{ii}.plot(obj.spatialPlotIndices, obj.f);
|
||||
end
|
||||
@@ -31,6 +36,9 @@ function obj = plot(obj)
|
||||
% Plot domain partitioning
|
||||
obj = obj.plotPartitions();
|
||||
|
||||
% Plot agent trails
|
||||
obj = obj.plotTrails();
|
||||
|
||||
% Enforce plot limits
|
||||
for ii = 1:size(obj.spatialPlotIndices, 2)
|
||||
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
|
||||
@@ -40,4 +48,7 @@ function obj = plot(obj)
|
||||
|
||||
% Plot performance
|
||||
obj = obj.plotPerformance();
|
||||
|
||||
% Plot h functions
|
||||
obj = obj.plotH();
|
||||
end
|
||||
@@ -9,9 +9,9 @@ function obj = plotConnections(obj)
|
||||
% Iterate over lower triangle off-diagonal region of the
|
||||
% adjacency matrix to plot communications links between agents
|
||||
X = []; Y = []; Z = [];
|
||||
for ii = 2:size(obj.adjacency, 1)
|
||||
for ii = 2:size(obj.constraintAdjacencyMatrix, 1)
|
||||
for jj = 1:(ii - 1)
|
||||
if obj.adjacency(ii, jj)
|
||||
if obj.constraintAdjacencyMatrix(ii, jj)
|
||||
X = [X; obj.agents{ii}.pos(1), obj.agents{jj}.pos(1)];
|
||||
Y = [Y; obj.agents{ii}.pos(2), obj.agents{jj}.pos(2)];
|
||||
Z = [Z; obj.agents{ii}.pos(3), obj.agents{jj}.pos(3)];
|
||||
|
||||
@@ -7,7 +7,7 @@ function obj = plotGraph(obj)
|
||||
end
|
||||
|
||||
% Form graph from adjacency matrix
|
||||
G = graph(obj.adjacency, 'omitselfloops');
|
||||
G = graph(obj.constraintAdjacencyMatrix, 'omitselfloops');
|
||||
|
||||
% Plot graph object
|
||||
if isnan(obj.networkGraphIndex)
|
||||
|
||||
61
@miSim/plotH.m
Normal file
61
@miSim/plotH.m
Normal file
@@ -0,0 +1,61 @@
|
||||
function obj = plotH(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
obj.hf = figure;
|
||||
tiledlayout(obj.hf, 4, 1, "TileSpacing", "tight", "Padding", "compact");
|
||||
|
||||
nexttile(obj.hf.Children(1));
|
||||
axes(obj.hf.Children(1).Children(1));
|
||||
grid(obj.hf.Children(1).Children(1), "on");
|
||||
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(1), "");
|
||||
title(obj.hf.Children(1).Children(1), "Collision Avoidance");
|
||||
hold(obj.hf.Children(1).Children(1), "on");
|
||||
obj.caPlot = plot(obj.h(1:(size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2), :)');
|
||||
legendStrings = [];
|
||||
for ii = 2:size(obj.agents, 1)
|
||||
for jj = 1:(ii - 1)
|
||||
legendStrings = [legendStrings; sprintf("A%d A%d", jj, ii)];
|
||||
end
|
||||
end
|
||||
legend(obj.hf.Children(1).Children(1), legendStrings, 'Location', 'bestoutside');
|
||||
hold(obj.hf.Children(1).Children(2), "off");
|
||||
|
||||
nexttile(obj.hf.Children(1));
|
||||
axes(obj.hf.Children(1).Children(1));
|
||||
grid(obj.hf.Children(1).Children(1), "on");
|
||||
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(2), "");
|
||||
title(obj.hf.Children(1).Children(1), "Obstacles");
|
||||
hold(obj.hf.Children(1).Children(1), "on");
|
||||
obj.obsPlot = plot(obj.h((1 + (size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2)):(((size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2)) + size(obj.agents, 1) * size(obj.obstacles, 1)), :)');
|
||||
legendStrings = [];
|
||||
for ii = 1:size(obj.obstacles, 1)
|
||||
for jj = 1:size(obj.agents, 1)
|
||||
legendStrings = [legendStrings; sprintf("A%d O%d", jj, ii)];
|
||||
end
|
||||
end
|
||||
legend(obj.hf.Children(1).Children(1), legendStrings, 'Location', 'bestoutside');
|
||||
hold(obj.hf.Children(1).Children(2), "off");
|
||||
|
||||
nexttile(obj.hf.Children(1));
|
||||
axes(obj.hf.Children(1).Children(1));
|
||||
grid(obj.hf.Children(1).Children(1), "on");
|
||||
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(1), "");
|
||||
title(obj.hf.Children(1).Children(1), "Domain");
|
||||
hold(obj.hf.Children(1).Children(1), "on");
|
||||
obj.domPlot = plot(obj.h((1 + (((size(obj.agents, 1) * (size(obj.agents, 1) - 1) / 2)) + size(obj.agents, 1) * size(obj.obstacles, 1))):size(obj.h, 1), 1:end)');
|
||||
legend(obj.hf.Children(1).Children(1), ["X Min"; "X Max"; "Y Min"; "Y Max"; "Z Min"; "Z Max";], 'Location', 'bestoutside');
|
||||
hold(obj.hf.Children(1).Children(2), "off");
|
||||
|
||||
nexttile(obj.hf.Children(1));
|
||||
axes(obj.hf.Children(1).Children(1));
|
||||
grid(obj.hf.Children(1).Children(1), "on");
|
||||
xlabel(obj.hf.Children(1).Children(1), "Time (s)"); % ylabel(obj.hf.Children(1).Children(1), "");
|
||||
title(obj.hf.Children(1).Children(1), "Communications");
|
||||
% skipped this for now because it is very complicated
|
||||
|
||||
end
|
||||
@@ -6,6 +6,13 @@ function obj = plotPerformance(obj)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
% fast exit when plotting is disabled
|
||||
if ~obj.makePlots
|
||||
return;
|
||||
end
|
||||
|
||||
obj.fPerf = figure;
|
||||
|
||||
axes(obj.fPerf);
|
||||
title(obj.fPerf.Children(1), "Sensor Performance");
|
||||
xlabel(obj.fPerf.Children(1), 'Time (s)');
|
||||
@@ -15,20 +22,22 @@ function obj = plotPerformance(obj)
|
||||
% Plot current cumulative performance
|
||||
hold(obj.fPerf.Children(1), 'on');
|
||||
o = plot(obj.fPerf.Children(1), obj.perf(end, :));
|
||||
warning('off', 'MATLAB:gui:array:InvalidArrayShape'); % suppress this warning to avoid polluting output
|
||||
o.XData = NaN(1, obj.maxIter); % correct time will be set at runtime
|
||||
o.YData = [0, NaN(1, obj.maxIter - 1)];
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
|
||||
% Plot current agent performance
|
||||
for ii = 1:(size(obj.perf, 1) - 1)
|
||||
hold(obj.fPerf.Children(1), 'on');
|
||||
o = [o; plot(obj.fPerf.Children(1), obj.perf(ii, :))];
|
||||
o(end).XData = NaN(1, obj.maxIter); % correct time will be set at runtime
|
||||
o(end).YData = [0, NaN(1, obj.maxIter - 1)];
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
end
|
||||
|
||||
% Add legend
|
||||
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
|
||||
for ii = 1:size(agentStrings, 1)
|
||||
agentStrings(ii) = sprintf(agentStrings(ii), ii);
|
||||
end
|
||||
agentStrings = string(cellfun(@(x) x.label, obj.agents, 'UniformOutput', false));
|
||||
agentStrings = ["Total"; agentStrings];
|
||||
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
|
||||
|
||||
|
||||
26
@miSim/plotTrails.m
Normal file
26
@miSim/plotTrails.m
Normal file
@@ -0,0 +1,26 @@
|
||||
function obj = plotTrails(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')}
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')}
|
||||
end
|
||||
|
||||
% fast exit when plotting is disabled
|
||||
if ~obj.makePlots
|
||||
return;
|
||||
end
|
||||
|
||||
% Plot full range of position history on each spatial plot axes
|
||||
o = [];
|
||||
for ii = 1:(size(obj.posHist, 1))
|
||||
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), 'on');
|
||||
o = [o; plot3(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), obj.posHist(ii, 1:obj.maxIter, 1), obj.posHist(ii, 1:obj.maxIter, 2), obj.posHist(ii, 1:obj.maxIter, 3), 'Color', 'k', 'LineWidth', 1)];
|
||||
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), 'off');
|
||||
end
|
||||
|
||||
% Copy trails to other figures?
|
||||
obj.trailPlot = o;
|
||||
|
||||
% Add legend?
|
||||
end
|
||||
43
@miSim/run.m
43
@miSim/run.m
@@ -7,40 +7,47 @@ function [obj] = run(obj)
|
||||
end
|
||||
|
||||
% Start video writer
|
||||
if obj.makeVideo
|
||||
v = obj.setupVideoWriter();
|
||||
v.open();
|
||||
end
|
||||
|
||||
steady = 0;
|
||||
for ii = 1:size(obj.times, 1)
|
||||
% Display current sim time
|
||||
obj.t = obj.times(ii);
|
||||
obj.timestepIndex = ii;
|
||||
fprintf("Sim Time: %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
|
||||
|
||||
% Validate current simulation configuration
|
||||
obj.validate();
|
||||
|
||||
% Check if it's time for new partitions
|
||||
updatePartitions = false;
|
||||
if ismember(obj.t, obj.partitioningTimes)
|
||||
% Check if it's time to end the sim (performance has settled)
|
||||
if obj.t >= obj.partitioningTimes(5)
|
||||
idx = find(obj.t == obj.partitioningTimes);
|
||||
newMeanTotalPerf = mean(obj.perf(end, ((idx - 5 + 1):idx)));
|
||||
if (obj.oldMeanTotalPerf * 0.95 <= newMeanTotalPerf) && (newMeanTotalPerf <= max(1e-6, obj.oldMeanTotalPerf * 1.05))
|
||||
steady = steady + 1;
|
||||
if steady >= 3
|
||||
fprintf("Performance is stable, terminating early at %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
|
||||
break; % performance is not improving further, exit main sim loop
|
||||
end
|
||||
end
|
||||
obj.oldMeanTotalPerf = newMeanTotalPerf;
|
||||
end
|
||||
updatePartitions = true;
|
||||
obj = obj.partition();
|
||||
end
|
||||
|
||||
% Iterate over agents to simulate their motion
|
||||
% Determine desired communications links
|
||||
obj = obj.lesserNeighbor();
|
||||
|
||||
% Iterate over agents to simulate their unconstrained motion
|
||||
for jj = 1:size(obj.agents, 1)
|
||||
obj.agents{jj} = obj.agents{jj}.run(obj.objective, obj.domain, obj.partitioning);
|
||||
obj.agents{jj} = obj.agents{jj}.run(obj.domain, obj.partitioning, obj.t, jj);
|
||||
end
|
||||
|
||||
% Adjust motion determined by unconstrained gradient ascent using
|
||||
% CBF constraints solved by QP
|
||||
obj = constrainMotion(obj);
|
||||
|
||||
% Finished simulation for this timestep, do accounting
|
||||
|
||||
% Update agent position history array
|
||||
obj.posHist(1:size(obj.agents, 1), obj.timestepIndex + 1, 1:3) = reshape(cell2mat(cellfun(@(x) x.pos, obj.agents, 'UniformOutput', false)), size(obj.agents, 1), 1, 3);
|
||||
|
||||
% Update total performance
|
||||
obj.performance = [obj.performance, sum(cellfun(@(x) x.performance(end), obj.agents))];
|
||||
|
||||
% Update adjacency matrix
|
||||
obj = obj.updateAdjacency();
|
||||
|
||||
@@ -48,10 +55,14 @@ function [obj] = run(obj)
|
||||
obj = obj.updatePlots(updatePartitions);
|
||||
|
||||
% Write frame in to video
|
||||
if obj.makeVideo
|
||||
I = getframe(obj.f);
|
||||
v.writeVideo(I);
|
||||
end
|
||||
end
|
||||
|
||||
if obj.makeVideo
|
||||
% Close video file
|
||||
v.close();
|
||||
end
|
||||
end
|
||||
|
||||
@@ -7,26 +7,29 @@ function obj = updateAdjacency(obj)
|
||||
end
|
||||
|
||||
% Initialize assuming only self-connections
|
||||
A = logical(eye(size(obj.agents, 1)));
|
||||
A = true(size(obj.agents, 1));
|
||||
|
||||
% Check lower triangle off-diagonal connections
|
||||
for ii = 2:size(A, 1)
|
||||
for jj = 1:(ii - 1)
|
||||
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) <= min([obj.agents{ii}.comRange, obj.agents{jj}.comRange])
|
||||
% Make sure that obstacles don't obstruct the line
|
||||
% of sight, breaking the connection
|
||||
for kk = 1:size(obj.obstacles, 1)
|
||||
if ~obj.obstacles{kk}.containsLine(obj.agents{ii}.pos, obj.agents{jj}.pos)
|
||||
A(ii, jj) = true;
|
||||
end
|
||||
end
|
||||
% need extra handling for cases with no obstacles
|
||||
if isempty(obj.obstacles)
|
||||
A(ii, jj) = true;
|
||||
end
|
||||
% Check that agents are not out of range
|
||||
if norm(obj.agents{ii}.pos - obj.agents{jj}.pos) > min([obj.agents{ii}.commsGeometry.radius, obj.agents{jj}.commsGeometry.radius])
|
||||
A(ii, jj) = false; % comm range violation
|
||||
continue;
|
||||
end
|
||||
|
||||
% % Check that agents do not have their line of sight obstructed
|
||||
% for kk = 1:size(obj.obstacles, 1)
|
||||
% if obj.obstacles{kk}.containsLine(obj.agents{jj}.pos, obj.agents{ii}.pos)
|
||||
% A(ii, jj) = false;
|
||||
% end
|
||||
% end
|
||||
end
|
||||
end
|
||||
|
||||
obj.adjacency = A | A';
|
||||
obj.adjacency = A & A';
|
||||
|
||||
if any(obj.adjacency - obj.constraintAdjacencyMatrix < 0, 'all')
|
||||
warning("Eliminated network connections that were necessary");
|
||||
end
|
||||
end
|
||||
@@ -7,13 +7,18 @@ function [obj] = updatePlots(obj, updatePartitions)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
|
||||
% Update agent positions, collision geometries
|
||||
% Fast exit when plotting is disabled
|
||||
if ~obj.makePlots
|
||||
return;
|
||||
end
|
||||
|
||||
% Update agent positions, collision/communication geometries
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
obj.agents{ii}.updatePlots();
|
||||
end
|
||||
|
||||
% The remaining updates might be possible to do in a clever way
|
||||
% that moves existing lines instead of clearing and
|
||||
% The remaining updates might should all be possible to do in a clever
|
||||
% way that moves existing lines instead of clearing and
|
||||
% re-plotting, which is much better for performance boost
|
||||
|
||||
% Update agent connections plot
|
||||
@@ -36,19 +41,34 @@ function [obj] = updatePlots(obj, updatePartitions)
|
||||
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
|
||||
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
|
||||
end
|
||||
|
||||
% Update agent trails
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
obj.trailPlot(ii).XData(obj.timestepIndex) = obj.posHist(ii, obj.timestepIndex, 1);
|
||||
obj.trailPlot(ii).YData(obj.timestepIndex) = obj.posHist(ii, obj.timestepIndex, 2);
|
||||
obj.trailPlot(ii).ZData(obj.timestepIndex) = obj.posHist(ii, obj.timestepIndex, 3);
|
||||
end
|
||||
|
||||
drawnow;
|
||||
|
||||
% Update performance plot
|
||||
if updatePartitions
|
||||
% find index corresponding to the current time
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
nowIdx = find(nowIdx);
|
||||
|
||||
% Re-normalize performance plot
|
||||
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
|
||||
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
|
||||
for ii = 2:size(obj.performancePlot, 1)
|
||||
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
|
||||
end
|
||||
normalizingFactor = 1/max(obj.performance(end));
|
||||
obj.performancePlot(1).YData(1:length(obj.performance)) = obj.performance * normalizingFactor;
|
||||
obj.performancePlot(1).XData(obj.timestepIndex) = obj.t;
|
||||
for ii = 2:(size(obj.agents, 1) + 1)
|
||||
obj.performancePlot(ii).YData(1:length(obj.performance)) = obj.agents{ii - 1}.performance * normalizingFactor;
|
||||
obj.performancePlot(ii).XData(obj.timestepIndex) = obj.t;
|
||||
end
|
||||
|
||||
% Update h function plots
|
||||
for ii = 1:size(obj.caPlot, 1)
|
||||
obj.caPlot(ii).YData(obj.timestepIndex) = obj.h(ii, obj.timestepIndex);
|
||||
end
|
||||
for ii = 1:size(obj.obsPlot, 1)
|
||||
obj.obsPlot(ii).YData(obj.timestepIndex) = obj.h(ii + size(obj.caPlot, 1), obj.timestepIndex);
|
||||
end
|
||||
for ii = 1:size(obj.domPlot, 1)
|
||||
obj.domPlot(ii).YData(obj.timestepIndex) = obj.h(ii + size(obj.caPlot, 1) + size(obj.obsPlot, 1), obj.timestepIndex);
|
||||
end
|
||||
end
|
||||
12
@miSim/validate.m
Normal file
12
@miSim/validate.m
Normal file
@@ -0,0 +1,12 @@
|
||||
function validate(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'miSim')};
|
||||
end
|
||||
arguments (Output)
|
||||
end
|
||||
|
||||
if max(conncomp(graph(obj.adjacency))) ~= 1
|
||||
warning("Network is not connected");
|
||||
end
|
||||
|
||||
end
|
||||
@@ -10,6 +10,8 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
|
||||
obj (1,1) {mustBeA(obj, 'sensingObjective')};
|
||||
end
|
||||
|
||||
obj.discretizationStep = discretizationStep;
|
||||
|
||||
obj.groundAlt = domain.minCorner(3);
|
||||
obj.protectedRange = protectedRange;
|
||||
|
||||
@@ -19,8 +21,8 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
|
||||
yMin = min(domain.footprint(:, 2));
|
||||
yMax = max(domain.footprint(:, 2));
|
||||
|
||||
xGrid = unique([xMin:discretizationStep:xMax, xMax]);
|
||||
yGrid = unique([yMin:discretizationStep:yMax, yMax]);
|
||||
xGrid = unique([xMin:obj.discretizationStep:xMax, xMax]);
|
||||
yGrid = unique([yMin:obj.discretizationStep:yMax, yMax]);
|
||||
|
||||
% Store grid points for plotting later
|
||||
[obj.X, obj.Y] = meshgrid(xGrid, yGrid);
|
||||
@@ -35,6 +37,7 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
|
||||
% store ground position
|
||||
idx = obj.values == 1;
|
||||
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
||||
obj.groundPos = obj.groundPos(1, 1:2); % for safety, in case 2 points are maximal (somehow)
|
||||
|
||||
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")
|
||||
end
|
||||
19
geometries/@rectangularPrism/closestToPoint.m
Normal file
19
geometries/@rectangularPrism/closestToPoint.m
Normal file
@@ -0,0 +1,19 @@
|
||||
function cPos = closestToPoint(obj, pos)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
pos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
cPos (:, 3) double;
|
||||
end
|
||||
cPos = NaN(1, 3);
|
||||
for ii = 1:3
|
||||
if pos(ii) < obj.minCorner(ii)
|
||||
cPos(ii) = obj.minCorner(ii);
|
||||
elseif pos(ii) > obj.maxCorner(ii)
|
||||
cPos(ii) = obj.maxCorner(ii);
|
||||
else
|
||||
cPos(ii) = pos(ii);
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -10,32 +10,37 @@ function c = containsLine(obj, pos1, pos2)
|
||||
|
||||
d = pos2 - pos1;
|
||||
|
||||
% edge case where the line is parallel to the geometry
|
||||
if abs(d) < 1e-12
|
||||
% check if it happens to start or end inside or outside of
|
||||
% the geometry
|
||||
% endpoint contained (trivial case)
|
||||
if obj.contains(pos1) || obj.contains(pos2)
|
||||
c = true;
|
||||
else
|
||||
c = false;
|
||||
end
|
||||
return;
|
||||
end
|
||||
|
||||
tmin = -inf;
|
||||
tmax = inf;
|
||||
|
||||
% Standard case
|
||||
% parameterize the line segment to check for an intersection
|
||||
tMin = 0;
|
||||
tMax = 1;
|
||||
for ii = 1:3
|
||||
% line is parallel to geometry
|
||||
if abs(d(ii)) < 1e-12
|
||||
if pos1(ii) < obj.minCorner(ii) || pos1(ii) > obj.maxCorner(ii)
|
||||
c = false;
|
||||
return;
|
||||
end
|
||||
else
|
||||
t1 = (obj.minCorner(ii) - pos1(ii)) / d(ii);
|
||||
t2 = (obj.maxCorner(ii) - pos2(ii)) / d(ii);
|
||||
tmin = max(tmin, min(t1, t2));
|
||||
tmax = min(tmax, max(t1, t2));
|
||||
if tmin > tmax
|
||||
t2 = (obj.maxCorner(ii) - pos1(ii)) / d(ii);
|
||||
|
||||
tLow = min(t1, t2);
|
||||
tHigh = max(t1, t2);
|
||||
|
||||
tMin = max(tMin, tLow);
|
||||
tMax = min(tMax, tHigh);
|
||||
|
||||
if tMin > tMax
|
||||
c = false;
|
||||
return;
|
||||
end
|
||||
end
|
||||
|
||||
c = (tmax >= 0) && (tmin <= 1);
|
||||
end
|
||||
c = true;
|
||||
end
|
||||
@@ -4,7 +4,7 @@ function d = distance(obj, pos)
|
||||
pos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
d (:, 1) double
|
||||
d (:, 1) double;
|
||||
end
|
||||
if obj.contains(pos)
|
||||
% Queried point is inside geometry
|
||||
|
||||
42
geometries/@rectangularPrism/distanceGradient.m
Normal file
42
geometries/@rectangularPrism/distanceGradient.m
Normal file
@@ -0,0 +1,42 @@
|
||||
function g = distanceGradient(obj, pos)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
pos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
g (:, 3) double
|
||||
end
|
||||
|
||||
% find nearest point on surface to query position
|
||||
q = min(max(pos, obj.minCorner), obj.maxCorner);
|
||||
|
||||
% Find distance and direction between pos and q
|
||||
v = pos - q;
|
||||
vNorm = norm(v);
|
||||
|
||||
% position is outside geometry
|
||||
if vNorm > 0
|
||||
% gradient is normalized vector from q to p
|
||||
g = v / vNorm;
|
||||
return;
|
||||
end
|
||||
|
||||
% position is on or in geometry
|
||||
% find distances to each face in each dimension
|
||||
distances = [pos(1) - obj.minCorner(1), obj.maxCorner(1) - pos(1), pos(2) - obj.minCorner(2), obj.maxCorner(2) - pos(2), pos(3) - obj.minCorner(3), obj.maxCorner(3) - pos(3)];
|
||||
[~, idx] = min(distances);
|
||||
|
||||
% I think there needs to be additional handling here for the
|
||||
% edge/corner cases, where there are ways to balance or resolve ties
|
||||
% when two faces are equidistant to the query position
|
||||
assert(sum(idx) == idx, "Implement edge case handling");
|
||||
|
||||
% select gradient that brings us quickest to the nearest face
|
||||
g = [ 1, 0, 0; ...
|
||||
-1, 0, 0; ...
|
||||
0, 1, 0; ...
|
||||
0, -1, 0; ...
|
||||
0, 0, 1; ...
|
||||
0, 0, -1;];
|
||||
g = g(idx, :);
|
||||
end
|
||||
@@ -24,6 +24,10 @@ function obj = initialize(obj, bounds, tag, label, objectiveFunction, discretiza
|
||||
% Compute center
|
||||
obj.center = obj.minCorner + obj.dimensions ./ 2;
|
||||
|
||||
% Compute a (fake) radius
|
||||
% fully contains the rectangular prism from the center
|
||||
obj.radius = (1/2) * sqrt(sum(obj.dimensions.^2));
|
||||
|
||||
% Compute vertices
|
||||
obj.vertices = [obj.minCorner;
|
||||
obj.maxCorner(1), obj.minCorner(2:3);
|
||||
@@ -44,4 +48,13 @@ function obj = initialize(obj, bounds, tag, label, objectiveFunction, discretiza
|
||||
if tag == REGION_TYPE.DOMAIN
|
||||
obj.objective = sensingObjective;
|
||||
end
|
||||
|
||||
% Initialize CBF
|
||||
% first part evaluates to +/-1 if the point is outside/inside the collision geometry
|
||||
% Second part determines the distance from the point to the boundary of the collision geometry
|
||||
obj.barrierFunction = @(x) (1 - 2 * obj.collisionGeometry.contains(x)) * obj.collisionGeometry.distance(x); % x is 1x3
|
||||
% gradient of barrier function
|
||||
obj.dBarrierFunction = @(x) obj.collisionGeometry.distanceGradient(x); % x is 1x3
|
||||
% as long as the collisionGeometry object is updated during runtime,
|
||||
% these functions never have to be updated again
|
||||
end
|
||||
@@ -1,4 +1,4 @@
|
||||
function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain)
|
||||
function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain, minAlt)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
|
||||
@@ -6,6 +6,7 @@ function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, d
|
||||
minDimension (1, 1) double = 10;
|
||||
maxDimension (1, 1) double = 20;
|
||||
domain (1, 1) {mustBeGeometry} = rectangularPrism;
|
||||
minAlt (1, 1) double = 0;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
|
||||
@@ -27,7 +28,7 @@ function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, d
|
||||
while ~domain.contains(candidateMaxCorner) || all(domain.objective.groundPos + domain.objective.protectedRange >= candidateMinCorner(1:2), 2) && all(domain.objective.groundPos - domain.objective.protectedRange <= candidateMaxCorner(1:2), 2)
|
||||
if ii == 0 || ii > 10
|
||||
candidateMinCorner = domain.random();
|
||||
candidateMinCorner(3) = 0; % bind to floor
|
||||
candidateMinCorner(3) = minAlt; % bind to floor (plus minimum altitude constraint)
|
||||
ii = 1;
|
||||
end
|
||||
|
||||
|
||||
@@ -3,7 +3,6 @@ classdef rectangularPrism
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
% Meta
|
||||
tag = REGION_TYPE.INVALID;
|
||||
label = "";
|
||||
|
||||
% Spatial
|
||||
minCorner = NaN(1, 3);
|
||||
@@ -11,6 +10,7 @@ classdef rectangularPrism
|
||||
dimensions = NaN(1, 3);
|
||||
center = NaN;
|
||||
footprint = NaN(4, 2);
|
||||
radius = NaN; % fake radius
|
||||
|
||||
% Graph
|
||||
vertices = NaN(8, 3);
|
||||
@@ -20,8 +20,13 @@ classdef rectangularPrism
|
||||
|
||||
% Plotting
|
||||
lines;
|
||||
|
||||
% collision
|
||||
barrierFunction;
|
||||
dBarrierFunction;
|
||||
end
|
||||
properties (SetAccess = public, GetAccess = public)
|
||||
label = "";
|
||||
% Sensing objective (for DOMAIN region type only)
|
||||
objective;
|
||||
end
|
||||
@@ -31,7 +36,9 @@ classdef rectangularPrism
|
||||
[obj ] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain);
|
||||
[r ] = random(obj);
|
||||
[c ] = contains(obj, pos);
|
||||
[cPos ] = closestToPoint(obj, pos);
|
||||
[d ] = distance(obj, pos);
|
||||
[g ] = distanceGradient(obj, pos);
|
||||
[c ] = containsLine(obj, pos1, pos2);
|
||||
[obj, f] = plotWireframe(obj, ind, f);
|
||||
end
|
||||
|
||||
10
geometries/@spherical/contains.m
Normal file
10
geometries/@spherical/contains.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function c = contains(obj, pos)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
pos (:, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
c (:, 1) logical
|
||||
end
|
||||
c = norm(obj.center - pos) <= obj.radius;
|
||||
end
|
||||
28
geometries/@spherical/containsLine.m
Normal file
28
geometries/@spherical/containsLine.m
Normal file
@@ -0,0 +1,28 @@
|
||||
function c = containsLine(obj, pos1, pos2)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
pos1 (1, 3) double;
|
||||
pos2 (1, 3) double;
|
||||
end
|
||||
arguments (Output)
|
||||
c (1, 1) logical
|
||||
end
|
||||
|
||||
d = pos2 - pos1;
|
||||
f = pos1 - obj.center;
|
||||
|
||||
a = dot(d, d);
|
||||
b = 2 * dot(f, d);
|
||||
c = dot(f, f) - obj.radius^2;
|
||||
|
||||
disc = b^2 - 4*a*c;
|
||||
|
||||
if disc < 0
|
||||
c = false;
|
||||
return;
|
||||
end
|
||||
|
||||
t = [(-b - sqrt(disc)) / (2 * a), (-b + sqrt(disc)) / (2 * a)];
|
||||
|
||||
c = (t(1) >= 0 && t(1) <= 1) || (t(2) >= 0 && t(2) <= 1);
|
||||
end
|
||||
42
geometries/@spherical/initialize.m
Normal file
42
geometries/@spherical/initialize.m
Normal file
@@ -0,0 +1,42 @@
|
||||
function obj = initialize(obj, center, radius, tag, label)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
center (1, 3) double;
|
||||
radius (1, 1) double;
|
||||
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
|
||||
label (1, 1) string = "";
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
end
|
||||
|
||||
obj.tag = tag;
|
||||
obj.label = label;
|
||||
|
||||
% Define geometry
|
||||
obj.center = center;
|
||||
obj.radius = radius;
|
||||
obj.diameter = 2 * obj.radius;
|
||||
|
||||
% Initialize CBF
|
||||
obj.barrierFunction = @(x) NaN;
|
||||
% gradient of barrier function
|
||||
obj.dBarrierFunction = @(x) NaN;
|
||||
|
||||
% fake vertices in a cross pattern
|
||||
obj.vertices = [obj.center + [obj.radius, 0, 0]; ...
|
||||
obj.center - [obj.radius, 0, 0]; ...
|
||||
obj.center + [0, obj.radius, 0]; ...
|
||||
obj.center - [0, obj.radius, 0]; ...
|
||||
obj.center + [0, 0, obj.radius]; ...
|
||||
obj.center - [0, 0, obj.radius]];
|
||||
% fake edges in two perpendicular rings
|
||||
obj.edges = [1, 3; ...
|
||||
3, 2; ...
|
||||
2, 4; ...
|
||||
4, 1; ...
|
||||
1, 5; ...
|
||||
5, 2; ...
|
||||
2, 6; ...
|
||||
6, 1];
|
||||
end
|
||||
43
geometries/@spherical/plotWireframe.m
Normal file
43
geometries/@spherical/plotWireframe.m
Normal file
@@ -0,0 +1,43 @@
|
||||
function [obj, f] = plotWireframe(obj, ind, f)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
ind (1, :) double = NaN;
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
|
||||
end
|
||||
arguments (Output)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
|
||||
end
|
||||
|
||||
% Create axes if they don't already exist
|
||||
f = firstPlotSetup(f);
|
||||
|
||||
% Create plotting inputs
|
||||
[X, Y, Z] = sphere(8);
|
||||
% Scale
|
||||
X = X * obj.radius;
|
||||
Y = Y * obj.radius;
|
||||
Z = Z * obj.radius;
|
||||
% Shift
|
||||
X = X + obj.center(1);
|
||||
Y = Y + obj.center(2);
|
||||
Z = Z + obj.center(3);
|
||||
|
||||
% Plot the boundaries of the geometry into 3D view
|
||||
if isnan(ind)
|
||||
o = plot3(f.CurrentAxes, X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
|
||||
else
|
||||
hold(f.Children(1).Children(ind(1)), "on");
|
||||
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, '-', 'Color', obj.tag.color, 'LineWidth', 2);
|
||||
hold(f.Children(1).Children(ind(1)), "off");
|
||||
end
|
||||
|
||||
% Copy to other requested tiles
|
||||
if numel(ind) > 1
|
||||
for ii = 2:size(ind, 2)
|
||||
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
|
||||
end
|
||||
end
|
||||
|
||||
obj.lines = o;
|
||||
end
|
||||
15
geometries/@spherical/random.m
Normal file
15
geometries/@spherical/random.m
Normal file
@@ -0,0 +1,15 @@
|
||||
function r = random(obj)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'spherical')};
|
||||
end
|
||||
arguments (Output)
|
||||
r (1, 3) double
|
||||
end
|
||||
y = (rand - 0.5) * 2; % uniform draw on [-1, 1]
|
||||
R = sqrt(1 - y^2);
|
||||
lon = (rand - 0.5) * 2 * pi; % uniform draw on [-pi, pi]
|
||||
s = [R * sin(lon), y, R * cos(lon)]; % random point on surface
|
||||
r = s * rand^(1/3); % scaled to random normalized radius [0, 1]
|
||||
|
||||
r = obj.center + obj.radius * r;
|
||||
end
|
||||
37
geometries/@spherical/spherical.m
Normal file
37
geometries/@spherical/spherical.m
Normal file
@@ -0,0 +1,37 @@
|
||||
classdef spherical
|
||||
% Rectangular prism geometry
|
||||
properties (SetAccess = private, GetAccess = public)
|
||||
% Spatial
|
||||
center = NaN;
|
||||
radius = NaN;
|
||||
diameter = NaN;
|
||||
|
||||
vertices; % fake vertices
|
||||
edges; % fake edges
|
||||
|
||||
% Plotting
|
||||
lines;
|
||||
|
||||
% collision
|
||||
barrierFunction;
|
||||
dBarrierFunction;
|
||||
end
|
||||
properties (SetAccess = public, GetAccess = public)
|
||||
% Meta
|
||||
tag = REGION_TYPE.INVALID;
|
||||
label = "";
|
||||
|
||||
% Sensing objective (for DOMAIN region type only)
|
||||
objective;
|
||||
end
|
||||
|
||||
methods (Access = public)
|
||||
[obj ] = initialize(obj, center, radius, tag, label);
|
||||
[r ] = random(obj);
|
||||
[c ] = contains(obj, pos);
|
||||
[d ] = distance(obj, pos);
|
||||
[g ] = distanceGradient(obj, pos);
|
||||
[c ] = containsLine(obj, pos1, pos2);
|
||||
[obj, f] = plotWireframe(obj, ind, f);
|
||||
end
|
||||
end
|
||||
@@ -9,6 +9,7 @@ classdef REGION_TYPE
|
||||
OBSTACLE (2, [255, 127, 127]); % obstacle region
|
||||
COLLISION (3, [255, 255, 128]); % collision avoidance region
|
||||
FOV (4, [255, 165, 0]); % field of view region
|
||||
COMMS (5, [0, 255, 0]); % comunications region
|
||||
end
|
||||
methods
|
||||
function obj = REGION_TYPE(id, color)
|
||||
|
||||
@@ -1,26 +0,0 @@
|
||||
function nextPos = gradientAscent(sensedValues, sensedPositions, pos, rate)
|
||||
arguments (Input)
|
||||
sensedValues (:, 1) double;
|
||||
sensedPositions (:, 3) double;
|
||||
pos (1, 3) double;
|
||||
rate (1, 1) double = 0.1;
|
||||
end
|
||||
arguments (Output)
|
||||
nextPos(1, 3) double;
|
||||
end
|
||||
|
||||
% As a default, maintain current position
|
||||
if size(sensedValues, 1) == 0 && size(sensedPositions, 1) == 0
|
||||
nextPos = pos;
|
||||
return;
|
||||
end
|
||||
|
||||
% Select next position by maximum sensed value
|
||||
nextPos = sensedPositions(sensedValues == max(sensedValues), :);
|
||||
nextPos = [nextPos(1, 1:2), pos(3)]; % just in case two get selected, simply pick one
|
||||
|
||||
% rate-limit motion
|
||||
v = nextPos - pos;
|
||||
nextPos = pos + (v / norm(v, 2)) * rate;
|
||||
|
||||
end
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="guidanceModels" Type="Relative"/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="1d8d2b42-2863-4985-9cf2-980917971eba" type="Reference"/>
|
||||
@@ -1,2 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sense.m" type="File"/>
|
||||
<Info location="random.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="containsLine.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="spherical.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="contains.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="initialize.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="plotWireframe.m" type="File"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="@spherical" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="plotTrails.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="lesserNeighbor.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="constrainMotion.m" type="File"/>
|
||||
@@ -1,6 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
<Info/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="guidanceModels" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="distanceGradient.m" type="File"/>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info>
|
||||
<Category UUID="FileClassCategory">
|
||||
<Label UUID="design"/>
|
||||
</Category>
|
||||
</Info>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="closestToPoint.m" type="File"/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="gradientAscent.m" type="File"/>
|
||||
@@ -1,21 +0,0 @@
|
||||
function [values, positions] = sense(obj, agent, sensingObjective, domain, partitioning)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
agent (1, 1) {mustBeA(agent, 'agent')};
|
||||
sensingObjective (1, 1) {mustBeA(sensingObjective, 'sensingObjective')};
|
||||
domain (1, 1) {mustBeGeometry};
|
||||
partitioning (:, :) double;
|
||||
end
|
||||
arguments (Output)
|
||||
values (:, 1) double;
|
||||
positions (:, 3) double;
|
||||
end
|
||||
|
||||
% Find positions for this agent's assigned partition in the domain
|
||||
idx = partitioning == agent.index;
|
||||
positions = [sensingObjective.X(idx), sensingObjective.Y(idx), zeros(size(sensingObjective.X(idx)))];
|
||||
|
||||
% Evaluate objective function at every point in this agent's
|
||||
% assigned partiton
|
||||
values = sensingObjective.values(idx);
|
||||
end
|
||||
@@ -3,6 +3,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
% System under test
|
||||
testClass = miSim;
|
||||
|
||||
% Debug
|
||||
makeVideo = true; % disable video writing for big performance increase
|
||||
makePlots = true; % disable plotting for big performance increase (also disables video)
|
||||
plotCommsGeometry = false; % disable plotting communications geometries
|
||||
|
||||
% Sim
|
||||
maxIter = 250;
|
||||
timestep = 0.05
|
||||
@@ -11,6 +16,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
% Domain
|
||||
domain = rectangularPrism; % domain geometry
|
||||
minDimension = 10;
|
||||
minAlt = 1; % minimum allowed agent altitude
|
||||
|
||||
% Obstacles
|
||||
minNumObstacles = 1; % Minimum number of obstacles to be randomly generated
|
||||
@@ -25,8 +31,8 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
objective = sensingObjective;
|
||||
|
||||
% Agents
|
||||
minAgents = 2; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 4; % Maximum number of agents to be randomly generated
|
||||
minAgents = 4; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 6; % Maximum number of agents to be randomly generated
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
agents = cell(0, 1);
|
||||
|
||||
@@ -84,12 +90,13 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
while badCandidate
|
||||
% Instantiate a rectangular prism obstacle inside the domain
|
||||
tc.obstacles{ii} = rectangularPrism;
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt);
|
||||
|
||||
% Check if the obstacle collides with an existing obstacle
|
||||
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
|
||||
badCandidate = false;
|
||||
end
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
@@ -104,11 +111,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
||||
candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
||||
candidatePos(3) = tc.minAlt + rand * 3; % place agents at decent altitudes for sensing
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
@@ -148,14 +155,14 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize candidate agent collision geometry
|
||||
candidateGeometry = rectangularPrism;
|
||||
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, tc.comRange);
|
||||
|
||||
% Make sure candidate agent doesn't collide with
|
||||
% domain
|
||||
@@ -203,7 +210,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles, tc.makeVideo);
|
||||
end
|
||||
function misim_run(tc)
|
||||
% randomly create obstacles
|
||||
@@ -216,7 +223,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
while badCandidate
|
||||
% Instantiate a rectangular prism obstacle inside the domain
|
||||
tc.obstacles{ii} = rectangularPrism;
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
|
||||
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain, tc.minAlt);
|
||||
|
||||
% Check if the obstacle collides with an existing obstacle
|
||||
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
|
||||
@@ -236,11 +243,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, tc.minAlt + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
@@ -279,15 +286,17 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize candidate agent collision geometry
|
||||
candidateGeometry = rectangularPrism;
|
||||
candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", ii));
|
||||
% candidateGeometry = rectangularPrism;
|
||||
% candidateGeometry = candidateGeometry.initialize([candidatePos - tc.collisionRanges(ii) * ones(1, 3); candidatePos + tc.collisionRanges(ii) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
candidateGeometry = spherical;
|
||||
candidateGeometry = candidateGeometry.initialize(candidatePos, tc.collisionRanges(ii), REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize candidate agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Initialize candidate agent
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
|
||||
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, tc.comRange);
|
||||
|
||||
% Make sure candidate agent doesn't collide with
|
||||
% domain
|
||||
@@ -335,7 +344,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles, tc.makeVideo);
|
||||
|
||||
% Run simulation loop
|
||||
tc.testClass = tc.testClass.run();
|
||||
@@ -354,8 +363,8 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
dh = [0,0,-1]; % bias agent altitude from domain center
|
||||
geometry1 = rectangularPrism;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
|
||||
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
@@ -369,18 +378,23 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent; agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, 3*d);
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, 3*d);
|
||||
|
||||
% Optional third agent along the +Y axis
|
||||
geometry3 = rectangularPrism;
|
||||
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
tc.agents{3} = agent;
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, 3*d);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
close(tc.testClass.fPerf);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, cell(0, 1), false, false);
|
||||
|
||||
tc.verifyEqual(tc.testClass.partitioning(500, 500:502), [2, 3, 1]); % all three near center
|
||||
tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all')); % more non-assignments than partition 1 assignments
|
||||
tc.verifyLessThan(sum(tc.testClass.partitioning == 2, 'all'), sum(tc.testClass.partitioning == 1, 'all')); % more partition 1 assignments than partition 2 assignments
|
||||
tc.verifyLessThan(sum(tc.testClass.partitioning == 3, 'all'), sum(tc.testClass.partitioning == 2, 'all')); % more partition 3 assignments than partition 2 assignments
|
||||
tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1; 2; 3;]);
|
||||
end
|
||||
function test_single_partition(tc)
|
||||
% make basic domain
|
||||
@@ -392,7 +406,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize agent collision geometry
|
||||
geometry1 = rectangularPrism;
|
||||
geometry1 = geometry1.initialize([[tc.domain.center(1:2), 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2), 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry1 = geometry1.initialize([[tc.domain.center(1:2), 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2), 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
@@ -402,15 +416,324 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
||||
|
||||
% Plot sensor parameters (optional)
|
||||
f = sensor.plotParameters();
|
||||
% f = sensor.plotParameters();
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], zeros(1,3), 0, 0, geometry1, sensor, 3);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, cell(0, 1), false, false);
|
||||
close(tc.testClass.fPerf);
|
||||
|
||||
tc.verifyEqual(unique(tc.testClass.partitioning), [0; 1]);
|
||||
tc.verifyLessThan(sum(tc.testClass.partitioning == 1, 'all'), sum(tc.testClass.partitioning == 0, 'all'));
|
||||
end
|
||||
function test_single_partition_basic_GA(tc)
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [2, 8]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
geometry1 = rectangularPrism;
|
||||
geometry1 = geometry1.initialize([[tc.domain.center(1:2)-tc.domain.dimensions(1)/3, 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2)-tc.domain.dimensions(1)/3, 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
% Homogeneous sensor model parameters
|
||||
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
||||
|
||||
% Plot sensor parameters (optional)
|
||||
% f = sensor.plotParameters();
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2)-tc.domain.dimensions(1)/3, 3], zeros(1,3), 0, 0, geometry1, sensor, 3, "", false);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, cell(0, 1), true, false);
|
||||
|
||||
% Run the simulation
|
||||
tc.testClass = tc.testClass.run();
|
||||
if isgraphics(tc.testClass.agents{1}.debugFig)
|
||||
close(tc.testClass.agents{1}.debugFig);
|
||||
end
|
||||
|
||||
% tc.verifyGreaterThan(tc.testClass.performance(end)/max(tc.testClass.performance), 0.99); % ends up very near a relative maximum
|
||||
end
|
||||
function test_collision_avoidance(tc)
|
||||
% No obstacles
|
||||
% Fixed agent initial conditions
|
||||
% Exaggerated large collision geometries to test CA
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [3, 7]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
radius = 1.5;
|
||||
d = [2.5, 0, 0];
|
||||
geometry1 = spherical;
|
||||
geometry2 = spherical;
|
||||
geometry1 = geometry1.initialize(tc.domain.center + d, radius, REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry2.initialize(tc.domain.center - d, radius, REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
% Homogeneous sensor model parameters
|
||||
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent; agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + d, zeros(1,3), 0, 0, geometry1, sensor, 5);
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d, zeros(1,3), 0, 0, geometry2, sensor, 5);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, 50, cell(0, 1), tc.makeVideo, tc.makePlots);
|
||||
|
||||
% Run the simulation
|
||||
tc.testClass.run();
|
||||
end
|
||||
function test_obstacle_avoidance(tc)
|
||||
% Right now this seems to prove that the communications
|
||||
% constraints are working, but the result is dissatisfying
|
||||
|
||||
% Fixed single obstacle
|
||||
% Fixed two agents initial conditions
|
||||
% Exaggerated large collision geometries
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5.2195]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
radius = 1.1;
|
||||
d = [3, 0, 0];
|
||||
|
||||
yOffset = 0;
|
||||
% choice of 0 leads to the agents getting stuck attempting to go around the obstacle on both sides
|
||||
% choice of 1 leads to one agent easily going around while the other gets stuck and the communications link is broken
|
||||
|
||||
geometry1 = spherical;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize(tc.domain.center - d + [0, radius * 1.1 - yOffset, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry2.initialize(tc.domain.center - d - [0, radius * 1.1 + yOffset, 0], radius, REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
|
||||
|
||||
% Initialize obstacles
|
||||
obstacleLength = 1;
|
||||
tc.obstacles{1} = rectangularPrism;
|
||||
tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, tc.minAlt; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1");
|
||||
|
||||
% Initialize agents
|
||||
commsRadius = (2*radius + obstacleLength) * 0.9; % defined such that they cannot go around the obstacle on both sides
|
||||
tc.agents = {agent; agent;};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - d + [0, radius * 1.1 - yOffset, 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - d - [0, radius *1.1 + yOffset, 0], zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles, tc.makeVideo);
|
||||
|
||||
% Run the simulation
|
||||
tc.testClass.run();
|
||||
end
|
||||
function test_communications_constraint(tc)
|
||||
% No obstacles
|
||||
% Fixed two agents initial conditions
|
||||
% Negligible collision geometries
|
||||
% Non-standard domain with two objectives that will try to pull the
|
||||
% agents apart
|
||||
l = 10; % domain size
|
||||
dom = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
dom.objective = dom.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [2, 8]) + mvnpdf([x(:), y(:)], [8, 8]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
radius = 0.1;
|
||||
d = [1, 0, 0];
|
||||
geometry1 = spherical;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize(dom.center + d, radius, REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry2.initialize(dom.center - d, radius, REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
|
||||
|
||||
% Initialize obstacles
|
||||
tc.obstacles = {};
|
||||
|
||||
% Initialize agents
|
||||
commsRadius = 4; % defined such that they cannot reach their objective without breaking connectivity
|
||||
tc.agents = {agent; agent;};
|
||||
tc.agents{1} = tc.agents{1}.initialize(dom.center + d, zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
|
||||
tc.agents{2} = tc.agents{2}.initialize(dom.center - d, zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(dom, dom.objective, tc.agents, tc.minAlt, tc.timestep, tc.partitoningFreq, 75, tc.obstacles, true, false);
|
||||
|
||||
% Run the simulation
|
||||
tc.testClass = tc.testClass.run();
|
||||
end
|
||||
function test_obstacle_blocks_comms_LOS(tc)
|
||||
% Fixed single obstacle
|
||||
% Fixed two agents initial conditions
|
||||
% Exaggerated large communications radius
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
radius = .25;
|
||||
d = 2;
|
||||
geometry1 = spherical;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize(tc.domain.center - [d, 0, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry2.initialize(tc.domain.center - [0, d, 0], radius, REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
|
||||
|
||||
% Initialize agents
|
||||
commsRadius = 5;
|
||||
tc.agents = {agent; agent;};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [0, d, 0], zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
|
||||
|
||||
% Initialize obstacles
|
||||
obstacleLength = 1.5;
|
||||
tc.obstacles{1} = rectangularPrism;
|
||||
tc.obstacles{1} = tc.obstacles{1}.initialize([tc.domain.center(1:2) - obstacleLength, 0; tc.domain.center(1:2) + obstacleLength, tc.domain.maxCorner(3)], REGION_TYPE.OBSTACLE, "Obstacle 1");
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, 0, tc.timestep, tc.partitoningFreq, 125, tc.obstacles, false, false);
|
||||
|
||||
% No communications link should be established
|
||||
tc.assertEqual(tc.testClass.adjacency, logical(eye(2)));
|
||||
end
|
||||
function test_LNA_case_1(tc)
|
||||
% based on example in meeting
|
||||
% No obstacles
|
||||
% Fixed 5 agents initial conditions
|
||||
% unitary communicaitons radius
|
||||
% negligible collision radius
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
radius = .01;
|
||||
d = 1;
|
||||
geometry5 = spherical;
|
||||
geometry1 = geometry5.initialize(tc.domain.center + [d, 0, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry5.initialize(tc.domain.center, radius, REGION_TYPE.COLLISION);
|
||||
geometry3 = geometry5.initialize(tc.domain.center + [-d, d, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry4 = geometry5.initialize(tc.domain.center + [-2*d, d, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry5 = geometry5.initialize(tc.domain.center + [0, d, 0], radius, REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
|
||||
|
||||
% Initialize agents
|
||||
commsRadius = d;
|
||||
tc.agents = {agent; agent; agent; agent; agent;};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center, zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [-d, d, 0], zeros(1,3), 0, 0, geometry3, sensor, commsRadius);
|
||||
tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [-2*d, d, 0], zeros(1,3), 0, 0, geometry4, sensor, commsRadius);
|
||||
tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, d, 0], zeros(1,3), 0, 0, geometry5, sensor, commsRadius);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, 0, tc.timestep, tc.partitoningFreq, 125, tc.obstacles, false, false);
|
||||
|
||||
% Constraint adjacency matrix defined by LNA should be as follows
|
||||
tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ...
|
||||
[ 1, 1, 0, 0, 0; ...
|
||||
1, 1, 0, 0, 1; ...
|
||||
0, 0, 1, 1, 1;
|
||||
0, 0, 1, 1, 0;
|
||||
0, 1, 1, 0, 1;]));
|
||||
end
|
||||
function test_LNA_case_2(tc)
|
||||
% based on example in paper Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information
|
||||
% No obstacles
|
||||
% Fixed 7 agents initial conditions
|
||||
% unitary communicaitons radius
|
||||
% negligible collision radius
|
||||
% make basic domain
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], [8, 5]), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
radius = .01;
|
||||
d = 1;
|
||||
geometry7 = spherical;
|
||||
geometry1 = geometry7.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry2 = geometry7.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry3 = geometry7.initialize(tc.domain.center + [0.9 * d, 0, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry4 = geometry7.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry5 = geometry7.initialize(tc.domain.center + [0, 0.9 * d, 0], radius, REGION_TYPE.COLLISION);
|
||||
geometry6 = geometry7.initialize(tc.domain.center, radius, REGION_TYPE.COLLISION);
|
||||
geometry7 = geometry7.initialize(tc.domain.center + [d/2, d/2, 0], radius, REGION_TYPE.COLLISION);
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 15, 3);
|
||||
|
||||
% Initialize agents
|
||||
commsRadius = d;
|
||||
tc.agents = {agent; agent; agent; agent; agent; agent; agent;};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [-0.9 * d/sqrt(2), 0.9 * d/sqrt(2), 0], zeros(1,3), 0, 0, geometry1, sensor, commsRadius);
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + [-0.5 * d, 0.25 * d, 0], zeros(1,3), 0, 0, geometry2, sensor, commsRadius);
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + [0.9 * d, 0, 0], zeros(1,3), 0, 0, geometry3, sensor, commsRadius);
|
||||
tc.agents{4} = tc.agents{4}.initialize(tc.domain.center + [0.9 * d/sqrt(2), -0.9 * d/sqrt(2), 0], zeros(1,3), 0, 0, geometry4, sensor, commsRadius);
|
||||
tc.agents{5} = tc.agents{5}.initialize(tc.domain.center + [0, 0.9 * d, 0], zeros(1,3), 0, 0, geometry5, sensor, commsRadius);
|
||||
tc.agents{6} = tc.agents{6}.initialize(tc.domain.center, zeros(1,3), 0, 0, geometry6, sensor, commsRadius);
|
||||
tc.agents{7} = tc.agents{7}.initialize(tc.domain.center + [d/2, d/2, 0], zeros(1,3), 0, 0, geometry7, sensor, commsRadius);
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, 0, tc.timestep, tc.partitoningFreq, 125, tc.obstacles, false, false);
|
||||
|
||||
% Constraint adjacency matrix defined by LNA should be as follows
|
||||
tc.assertEqual(tc.testClass.constraintAdjacencyMatrix, logical( ...
|
||||
[ 1, 1, 0, 0, 0, 0, 0; ...
|
||||
1, 1, 0, 0, 1, 0, 0; ...
|
||||
0, 0, 1, 1, 0, 0, 0;
|
||||
0, 0, 1, 1, 0, 1, 0;
|
||||
0, 1, 0, 0, 1, 1, 0;
|
||||
0, 0, 0, 1, 1, 1, 1;
|
||||
0, 0, 0, 0, 0, 1, 1; ]));
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
function mustBeGeometry(geometry)
|
||||
validGeometries = ["rectangularPrism";];
|
||||
validGeometries = ["rectangularPrism"; "spherical"];
|
||||
if isa(geometry, 'cell')
|
||||
for ii = 1:size(geometry, 1)
|
||||
assert(any(arrayfun(@(x) isa(geometry{ii}, x), validGeometries)), "Geometry in index %d is not a valid geometry class", ii);
|
||||
|
||||
Reference in New Issue
Block a user