6 Commits

60 changed files with 102 additions and 55 deletions

3
.gitignore vendored
View File

@@ -45,3 +45,6 @@ sandbox/*
# Videos
*.mp4
*.avi
# Figures
*.fig

View File

@@ -29,5 +29,5 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
% Initialize FOV cone
obj.fovGeometry = cone;
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tan(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tand(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
end

View File

@@ -14,6 +14,8 @@ classdef miSim
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
partitioning = NaN;
performance = NaN; % current cumulative sensor performance
fPerf; % performance plot figure
end
properties (Access = private)
@@ -29,7 +31,6 @@ classdef miSim
graphPlot; % objects for abstract network graph plot
partitionPlot; % objects for partition plot
fPerf; % performance plot figure
performancePlot; % objects for sensor performance plot
% Indicies for various plot types in the main tiled layout figure
@@ -53,4 +54,4 @@ classdef miSim
methods (Access = private)
[v] = setupVideoWriter(obj);
end
end
end

View File

@@ -20,15 +20,20 @@ function obj = partition(obj)
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
agentInds = cat(3, agentInds{:});
% Get highest performing agent's index
[m,n,~] = size(agentInds);
[jj,kk] = ndgrid(1:m, 1:n);
% Use highest performing agent's index to form partitions
[m, n, ~] = size(agentInds);
[jj, kk] = ndgrid(1:m, 1:n);
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
% Get individual agent sensor performance
nowIdx = [0; obj.partitioningTimes] == obj.t;
if isnan(obj.t)
nowIdx = 1;
end
for ii = 1:size(obj.agents, 1)
obj.perf(ii, nowIdx) = sum(agentPerformances(sub2ind(size(agentInds), jj, kk, ii)), 'all');
idx = obj.partitioning == ii;
agentPerformance = squeeze(agentPerformances(:, :, ii));
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
end
% Current total performance

View File

@@ -24,5 +24,13 @@ function obj = plotPerformance(obj)
hold(obj.fPerf.Children(1), 'off');
end
% Add legend
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
for ii = 1:size(agentStrings, 1)
agentStrings(ii) = sprintf(agentStrings(ii), ii);
end
agentStrings = ["Total"; agentStrings];
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
obj.performancePlot = o;
end

View File

@@ -10,6 +10,7 @@ function [obj] = run(obj)
v = obj.setupVideoWriter();
v.open();
steady = 0;
for ii = 1:size(obj.times, 1)
% Display current sim time
obj.t = obj.times(ii);
@@ -40,4 +41,4 @@ function [obj] = run(obj)
% Close video file
v.close();
end
end

View File

@@ -40,13 +40,15 @@ function [obj] = updatePlots(obj, updatePartitions)
% Update performance plot
if updatePartitions
% find index corresponding to the current time
nowIdx = [0; obj.partitioningTimes] == obj.t;
% set(obj.performancePlot(1), 'YData', obj.perf(end, 1:find(nowIdx)));
obj.performancePlot(1).YData(nowIdx) = obj.perf(end, nowIdx);
for ii = 2:size(obj.performancePlot, 1)
obj.performancePlot(ii).YData(nowIdx) = obj.perf(ii, nowIdx);
end
drawnow;
end
nowIdx = find(nowIdx);
% Re-normalize performance plot
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
for ii = 2:size(obj.performancePlot, 1)
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
end
end
end

View File

@@ -28,9 +28,12 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
% Evaluate function over grid points
obj.objectiveFunction = objectiveFunction;
obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X));
% Normalize
obj.values = obj.values ./ max(obj.values, [], "all");
% store ground position
idx = obj.values == max(obj.values, [], "all");
idx = obj.values == 1;
obj.groundPos = [obj.X(idx), obj.Y(idx)];
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensingModels" Type="Relative"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="420d04e4-3880-4a45-8609-11cb30d87302" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensorModels" Type="Relative"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="d143c27d-6824-4569-9093-8150b60976cb" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sensorModels" type="File"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sensingModels" type="File"/>

View File

@@ -12,7 +12,7 @@ function f = plotParameters(obj)
% Sample membership functions
d_x = obj.distanceMembership(d);
t_x = obj.tiltMembership(deg2rad(t));
t_x = obj.tiltMembership(t);
% Plot resultant sigmoid curves
f = figure;

View File

@@ -10,9 +10,12 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
value (:, 1) double;
end
% compute direct distance and distance projected onto the ground
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), x) - agentTilt;
% compute tilt angle
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
% Membership functions
mu_d = obj.distanceMembership(d);

View File

@@ -5,7 +5,7 @@ classdef sigmoidSensor
betaDist = NaN;
alphaPan = NaN;
betaPan = NaN;
alphaTilt = NaN;
alphaTilt = NaN; % degrees
betaTilt = NaN;
end

View File

@@ -1,7 +1,7 @@
function x = tiltMembership(obj, t)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
t (:, 1) double;
t (:, 1) double; % degrees
end
arguments (Output)
x (:, 1) double;

View File

@@ -25,8 +25,8 @@ classdef test_miSim < matlab.unittest.TestCase
objective = sensingObjective;
% Agents
minAgents = 3; % Minimum number of agents to be randomly generated
maxAgents = 6; % Maximum number of agents to be randomly generated
minAgents = 2; % Minimum number of agents to be randomly generated
maxAgents = 4; % Maximum number of agents to be randomly generated
sensingLength = 0.05; % length parameter used by sensing function
agents = cell(0, 1);
@@ -42,11 +42,11 @@ classdef test_miSim < matlab.unittest.TestCase
betaTiltMax = 15;
alphaDistMin = 2.5;
alphaDistMax = 3;
alphaTiltMin = deg2rad(15);
alphaTiltMax = deg2rad(30);
alphaTiltMin = 15; % degrees
alphaTiltMax = 30; % degrees
% Communications
comRange = 5; % Maximum range between agents that forms a communications link
comRange = 8; % Maximum range between agents that forms a communications link
end
% Setup for each test
@@ -104,10 +104,11 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -239,6 +240,7 @@ classdef test_miSim < matlab.unittest.TestCase
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -349,39 +351,44 @@ classdef test_miSim < matlab.unittest.TestCase
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
dh = [0,0,-1]; % bias agent altitude from domain center
geometry1 = rectangularPrism;
geometry2 = geometry1;
geometry1 = geometry1.initialize([tc.domain.center + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
geometry2 = geometry2.initialize([tc.domain.center - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
% Initialize agent sensor model
sensor = sigmoidSensor;
% Homogeneous sensor model parameters
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
f = sensor.plotParameters();
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
% Heterogeneous sensor model parameters
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Plot sensor parameters (optional)
% f = sensor.plotParameters();
% Initialize agents
tc.agents = {agent; agent};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
% Optional third agent along the +Y axis
geometry3 = rectangularPrism;
geometry3 = geometry3.initialize([tc.domain.center - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
tc.agents{3} = agent;
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
function test_annular_partition(tc)
function test_single_partition(tc)
% make basic domain
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
geometry1 = rectangularPrism;
@@ -390,7 +397,11 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize agent sensor model
sensor = sigmoidSensor;
% Homogeneous sensor model parameters
sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 0.3641, 13);
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
% Plot sensor parameters (optional)
f = sensor.plotParameters();
% Initialize agents
@@ -399,6 +410,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
end

View File

@@ -13,8 +13,8 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
betaTiltMax = 15;
alphaDistMin = 2.5;
alphaDistMax = 3;
alphaTiltMin = deg2rad(15);
alphaTiltMax = deg2rad(30);
alphaTiltMin = 15; % degrees
alphaTiltMax = 30; % degrees
end
methods (TestMethodSetup)
@@ -31,22 +31,31 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
tc.testClass = sigmoidSensor;
alphaDist = 2.5;
betaDist = 3;
alphaTilt = deg2rad(15);
alphaTilt = 15; % degrees
betaTilt = 3;
h = 1e-6;
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
% Plot
tc.testClass.plotParameters();
% Plot (optional)
% tc.testClass.plotParameters();
% Performance at current position should be maximized (1)
% some wiggle room is needed for certain parameter conditions,
% e.g. small alphaDist and betaDist produce mu_d slightly < 1
tc.verifyEqual(tc.testClass.sensorPerformance(zeros(1, 3), NaN, 0, zeros(1, 3)), 1, 'AbsTol', 1e-3);
% Anticipate perfect performance for a point directly below and
% extremely close
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [0, 0, 0]), 1, 'RelTol', 1e-3);
% It looks like mu_t can max out at really low values like 0.37
% when alphaTilt and betaTilt are small, which seems wrong
% Performance at distance alphaDist should be 1/2
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2, 'AbsTol', 1e-3);
% Performance at nadir point, distance alphaDist should be 1/2 exactly
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2);
% Performance at (almost) 0 distance, alphaTilt should be 1/2
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [tand(alphaTilt)*h, 0, 0]), 1/2, 'RelTol', 1e-3);
% Performance at great distance should be 0
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, 10], NaN, 0, [0, 0, 0]), 0, 'AbsTol', 1e-9);
% Performance at great tilt should be 0
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [5, 5, 0]), 0, 'AbsTol', 1e-9);
end
end