Compare commits
6 Commits
more-clean
...
gradient-a
| Author | SHA1 | Date | |
|---|---|---|---|
| 352d2ed1de | |||
| 59805dff72 | |||
| a8380985e1 | |||
| 55b69d4e33 | |||
| 779d7d2cc6 | |||
| 58d009c8fc |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -45,3 +45,6 @@ sandbox/*
|
||||
# Videos
|
||||
*.mp4
|
||||
*.avi
|
||||
|
||||
# Figures
|
||||
*.fig
|
||||
|
||||
@@ -29,5 +29,5 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
|
||||
|
||||
% Initialize FOV cone
|
||||
obj.fovGeometry = cone;
|
||||
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tan(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
|
||||
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tand(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
|
||||
end
|
||||
@@ -14,6 +14,8 @@ classdef miSim
|
||||
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
|
||||
partitioning = NaN;
|
||||
performance = NaN; % current cumulative sensor performance
|
||||
|
||||
fPerf; % performance plot figure
|
||||
end
|
||||
|
||||
properties (Access = private)
|
||||
@@ -29,7 +31,6 @@ classdef miSim
|
||||
graphPlot; % objects for abstract network graph plot
|
||||
partitionPlot; % objects for partition plot
|
||||
|
||||
fPerf; % performance plot figure
|
||||
performancePlot; % objects for sensor performance plot
|
||||
|
||||
% Indicies for various plot types in the main tiled layout figure
|
||||
@@ -53,4 +54,4 @@ classdef miSim
|
||||
methods (Access = private)
|
||||
[v] = setupVideoWriter(obj);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -20,15 +20,20 @@ function obj = partition(obj)
|
||||
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
|
||||
agentInds = cat(3, agentInds{:});
|
||||
|
||||
% Get highest performing agent's index
|
||||
[m,n,~] = size(agentInds);
|
||||
[jj,kk] = ndgrid(1:m, 1:n);
|
||||
% Use highest performing agent's index to form partitions
|
||||
[m, n, ~] = size(agentInds);
|
||||
[jj, kk] = ndgrid(1:m, 1:n);
|
||||
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
|
||||
|
||||
% Get individual agent sensor performance
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
if isnan(obj.t)
|
||||
nowIdx = 1;
|
||||
end
|
||||
for ii = 1:size(obj.agents, 1)
|
||||
obj.perf(ii, nowIdx) = sum(agentPerformances(sub2ind(size(agentInds), jj, kk, ii)), 'all');
|
||||
idx = obj.partitioning == ii;
|
||||
agentPerformance = squeeze(agentPerformances(:, :, ii));
|
||||
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
|
||||
end
|
||||
|
||||
% Current total performance
|
||||
|
||||
@@ -24,5 +24,13 @@ function obj = plotPerformance(obj)
|
||||
hold(obj.fPerf.Children(1), 'off');
|
||||
end
|
||||
|
||||
% Add legend
|
||||
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
|
||||
for ii = 1:size(agentStrings, 1)
|
||||
agentStrings(ii) = sprintf(agentStrings(ii), ii);
|
||||
end
|
||||
agentStrings = ["Total"; agentStrings];
|
||||
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
|
||||
|
||||
obj.performancePlot = o;
|
||||
end
|
||||
@@ -10,6 +10,7 @@ function [obj] = run(obj)
|
||||
v = obj.setupVideoWriter();
|
||||
v.open();
|
||||
|
||||
steady = 0;
|
||||
for ii = 1:size(obj.times, 1)
|
||||
% Display current sim time
|
||||
obj.t = obj.times(ii);
|
||||
@@ -40,4 +41,4 @@ function [obj] = run(obj)
|
||||
|
||||
% Close video file
|
||||
v.close();
|
||||
end
|
||||
end
|
||||
|
||||
@@ -40,13 +40,15 @@ function [obj] = updatePlots(obj, updatePartitions)
|
||||
|
||||
% Update performance plot
|
||||
if updatePartitions
|
||||
% find index corresponding to the current time
|
||||
nowIdx = [0; obj.partitioningTimes] == obj.t;
|
||||
% set(obj.performancePlot(1), 'YData', obj.perf(end, 1:find(nowIdx)));
|
||||
obj.performancePlot(1).YData(nowIdx) = obj.perf(end, nowIdx);
|
||||
for ii = 2:size(obj.performancePlot, 1)
|
||||
obj.performancePlot(ii).YData(nowIdx) = obj.perf(ii, nowIdx);
|
||||
end
|
||||
drawnow;
|
||||
end
|
||||
nowIdx = find(nowIdx);
|
||||
|
||||
% Re-normalize performance plot
|
||||
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
|
||||
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
|
||||
for ii = 2:size(obj.performancePlot, 1)
|
||||
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -28,9 +28,12 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep, pr
|
||||
% Evaluate function over grid points
|
||||
obj.objectiveFunction = objectiveFunction;
|
||||
obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X));
|
||||
|
||||
% Normalize
|
||||
obj.values = obj.values ./ max(obj.values, [], "all");
|
||||
|
||||
% store ground position
|
||||
idx = obj.values == max(obj.values, [], "all");
|
||||
idx = obj.values == 1;
|
||||
obj.groundPos = [obj.X(idx), obj.Y(idx)];
|
||||
|
||||
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")
|
||||
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="sensingModels" Type="Relative"/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="420d04e4-3880-4a45-8609-11cb30d87302" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info Ref="sensorModels" Type="Relative"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="d143c27d-6824-4569-9093-8150b60976cb" type="Reference"/>
|
||||
@@ -0,0 +1,2 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sensorModels" type="File"/>
|
||||
@@ -1,2 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<Info location="sensingModels" type="File"/>
|
||||
@@ -12,7 +12,7 @@ function f = plotParameters(obj)
|
||||
|
||||
% Sample membership functions
|
||||
d_x = obj.distanceMembership(d);
|
||||
t_x = obj.tiltMembership(deg2rad(t));
|
||||
t_x = obj.tiltMembership(t);
|
||||
|
||||
% Plot resultant sigmoid curves
|
||||
f = figure;
|
||||
@@ -10,9 +10,12 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
|
||||
value (:, 1) double;
|
||||
end
|
||||
|
||||
% compute direct distance and distance projected onto the ground
|
||||
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
|
||||
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
|
||||
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), x) - agentTilt;
|
||||
|
||||
% compute tilt angle
|
||||
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
|
||||
|
||||
% Membership functions
|
||||
mu_d = obj.distanceMembership(d);
|
||||
@@ -5,7 +5,7 @@ classdef sigmoidSensor
|
||||
betaDist = NaN;
|
||||
alphaPan = NaN;
|
||||
betaPan = NaN;
|
||||
alphaTilt = NaN;
|
||||
alphaTilt = NaN; % degrees
|
||||
betaTilt = NaN;
|
||||
end
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
function x = tiltMembership(obj, t)
|
||||
arguments (Input)
|
||||
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
|
||||
t (:, 1) double;
|
||||
t (:, 1) double; % degrees
|
||||
end
|
||||
arguments (Output)
|
||||
x (:, 1) double;
|
||||
@@ -25,8 +25,8 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
objective = sensingObjective;
|
||||
|
||||
% Agents
|
||||
minAgents = 3; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 6; % Maximum number of agents to be randomly generated
|
||||
minAgents = 2; % Minimum number of agents to be randomly generated
|
||||
maxAgents = 4; % Maximum number of agents to be randomly generated
|
||||
sensingLength = 0.05; % length parameter used by sensing function
|
||||
agents = cell(0, 1);
|
||||
|
||||
@@ -42,11 +42,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
betaTiltMax = 15;
|
||||
alphaDistMin = 2.5;
|
||||
alphaDistMax = 3;
|
||||
alphaTiltMin = deg2rad(15);
|
||||
alphaTiltMax = deg2rad(30);
|
||||
alphaTiltMin = 15; % degrees
|
||||
alphaTiltMax = 30; % degrees
|
||||
|
||||
% Communications
|
||||
comRange = 5; % Maximum range between agents that forms a communications link
|
||||
comRange = 8; % Maximum range between agents that forms a communications link
|
||||
end
|
||||
|
||||
% Setup for each test
|
||||
@@ -104,10 +104,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
if ii == 1
|
||||
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
|
||||
candidatePos = tc.domain.random();
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
@@ -239,6 +240,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
end
|
||||
else
|
||||
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
|
||||
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
|
||||
end
|
||||
|
||||
% Make sure that the candidate position is within the
|
||||
@@ -349,39 +351,44 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
dh = [0,0,-1]; % bias agent altitude from domain center
|
||||
geometry1 = rectangularPrism;
|
||||
geometry2 = geometry1;
|
||||
geometry1 = geometry1.initialize([tc.domain.center + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry2 = geometry2.initialize([tc.domain.center - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
|
||||
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
|
||||
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
|
||||
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
% Homogeneous sensor model parameters
|
||||
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
|
||||
f = sensor.plotParameters();
|
||||
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
|
||||
% Heterogeneous sensor model parameters
|
||||
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
|
||||
|
||||
% Plot sensor parameters (optional)
|
||||
% f = sensor.plotParameters();
|
||||
|
||||
% Initialize agents
|
||||
tc.agents = {agent; agent};
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
|
||||
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
|
||||
|
||||
% Optional third agent along the +Y axis
|
||||
geometry3 = rectangularPrism;
|
||||
geometry3 = geometry3.initialize([tc.domain.center - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
|
||||
tc.agents{3} = agent;
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
close(tc.testClass.fPerf);
|
||||
end
|
||||
function test_annular_partition(tc)
|
||||
function test_single_partition(tc)
|
||||
% make basic domain
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
l = 10; % domain size
|
||||
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
|
||||
|
||||
% make basic sensing objective
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
|
||||
|
||||
% Initialize agent collision geometry
|
||||
geometry1 = rectangularPrism;
|
||||
@@ -390,7 +397,11 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
% Initialize agent sensor model
|
||||
sensor = sigmoidSensor;
|
||||
% Homogeneous sensor model parameters
|
||||
sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 0.3641, 13);
|
||||
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
|
||||
alphaDist = l/2; % half of domain length/width
|
||||
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
|
||||
|
||||
% Plot sensor parameters (optional)
|
||||
f = sensor.plotParameters();
|
||||
|
||||
% Initialize agents
|
||||
@@ -399,6 +410,7 @@ classdef test_miSim < matlab.unittest.TestCase
|
||||
|
||||
% Initialize the simulation
|
||||
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
|
||||
close(tc.testClass.fPerf);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -13,8 +13,8 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
|
||||
betaTiltMax = 15;
|
||||
alphaDistMin = 2.5;
|
||||
alphaDistMax = 3;
|
||||
alphaTiltMin = deg2rad(15);
|
||||
alphaTiltMax = deg2rad(30);
|
||||
alphaTiltMin = 15; % degrees
|
||||
alphaTiltMax = 30; % degrees
|
||||
end
|
||||
|
||||
methods (TestMethodSetup)
|
||||
@@ -31,22 +31,31 @@ classdef test_sigmoidSensor < matlab.unittest.TestCase
|
||||
tc.testClass = sigmoidSensor;
|
||||
alphaDist = 2.5;
|
||||
betaDist = 3;
|
||||
alphaTilt = deg2rad(15);
|
||||
alphaTilt = 15; % degrees
|
||||
betaTilt = 3;
|
||||
h = 1e-6;
|
||||
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
|
||||
|
||||
% Plot
|
||||
tc.testClass.plotParameters();
|
||||
% Plot (optional)
|
||||
% tc.testClass.plotParameters();
|
||||
|
||||
% Performance at current position should be maximized (1)
|
||||
% some wiggle room is needed for certain parameter conditions,
|
||||
% e.g. small alphaDist and betaDist produce mu_d slightly < 1
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance(zeros(1, 3), NaN, 0, zeros(1, 3)), 1, 'AbsTol', 1e-3);
|
||||
% Anticipate perfect performance for a point directly below and
|
||||
% extremely close
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [0, 0, 0]), 1, 'RelTol', 1e-3);
|
||||
% It looks like mu_t can max out at really low values like 0.37
|
||||
% when alphaTilt and betaTilt are small, which seems wrong
|
||||
|
||||
% Performance at distance alphaDist should be 1/2
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2, 'AbsTol', 1e-3);
|
||||
% Performance at nadir point, distance alphaDist should be 1/2 exactly
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2);
|
||||
|
||||
% Performance at (almost) 0 distance, alphaTilt should be 1/2
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [tand(alphaTilt)*h, 0, 0]), 1/2, 'RelTol', 1e-3);
|
||||
|
||||
% Performance at great distance should be 0
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, 10], NaN, 0, [0, 0, 0]), 0, 'AbsTol', 1e-9);
|
||||
|
||||
% Performance at great tilt should be 0
|
||||
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [5, 5, 0]), 0, 'AbsTol', 1e-9);
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
Reference in New Issue
Block a user