21 Commits

Author SHA1 Message Date
352d2ed1de removed early exit from main loop 2025-11-25 13:09:33 -08:00
59805dff72 added early exit from main loop for semistable final states 2025-11-25 09:07:02 -08:00
a8380985e1 better sigmoid sensor unit testing 2025-11-25 09:07:02 -08:00
55b69d4e33 added performance plot legend, rolling normalization 2025-11-25 09:07:02 -08:00
779d7d2cc6 fixed issues in sigmoid sensor model causing inverted response (annular partitions) 2025-11-25 09:07:02 -08:00
58d009c8fc fixed initial altitude range 2025-11-25 09:07:02 -08:00
b62f0f6410 better random agent placement with respect to sensor capabilities 2025-11-18 09:08:12 -08:00
fe5f3bb2be cleaned up plotting 2025-11-18 09:08:12 -08:00
35b15db5d3 Added plotting of sigmoid sensor parameters 2025-11-18 09:08:12 -08:00
f50e3e2832 started unit test for sigmoid sensor performance fcns 2025-11-18 09:08:12 -08:00
e53b721f34 started performance plot 2025-11-18 09:08:12 -08:00
db20f11ea8 added sensor performance metric 2025-11-18 09:08:12 -08:00
86342c4572 updated plotting org 2025-11-18 09:08:12 -08:00
b9a2a83ac6 added randomness to sensor parameters 2025-11-18 09:08:12 -08:00
9dbd29849f cleaned up randomly generated obstacle collision code 2025-11-18 09:08:12 -08:00
12dbde7a02 cleaned up obstacle generation 2025-11-18 09:08:12 -08:00
c9ac9d7725 adjusted partitioning to allow non-assignment 2025-11-18 09:08:12 -08:00
afa5d79c1d refactored sensing objective into domain, random inits 2025-11-18 09:08:12 -08:00
e0f365b21b reorganized code into separate files 2025-11-18 09:08:12 -08:00
4363914215 fixed cone radius and sigmoid sensor test parameters 2025-11-18 09:08:12 -08:00
855b28b066 added large factor to sigmoid sensor performance calculation 2025-11-18 09:08:12 -08:00
74 changed files with 508 additions and 235 deletions

9
.gitignore vendored
View File

@@ -40,4 +40,11 @@ codegen/
*.sbproj.bak
# Sandbox contents
sandbox/*
sandbox/*
# Videos
*.mp4
*.avi
# Figures
*.fig

View File

@@ -29,5 +29,5 @@ function obj = initialize(obj, pos, vel, pan, tilt, collisionGeometry, sensorMod
% Initialize FOV cone
obj.fovGeometry = cone;
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tan(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
obj.fovGeometry = obj.fovGeometry.initialize([obj.pos(1:2), 0], tand(obj.sensorModel.alphaTilt) * obj.pos(3), obj.pos(3), REGION_TYPE.FOV, sprintf("%s FOV", obj.label));
end

View File

@@ -1,4 +1,4 @@
function [obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
function obj = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
domain (1, 1) {mustBeGeometry};
@@ -11,12 +11,11 @@ function [obj, f] = initialize(obj, domain, objective, agents, timestep, partito
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Define simulation time parameters
obj.timestep = timestep;
obj.maxIter = maxIter;
obj.maxIter = maxIter - 1;
% Define domain
obj.domain = domain;
@@ -34,9 +33,17 @@ function [obj, f] = initialize(obj, domain, objective, agents, timestep, partito
% Compute adjacency matrix
obj = obj.updateAdjacency();
% Set up times to iterate over
obj.times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
obj.partitioningTimes = obj.times(obj.partitioningFreq:obj.partitioningFreq:size(obj.times, 1));
% Prepare performance data store (at t = 0, all have 0 performance)
obj.fPerf = figure;
obj.perf = [zeros(size(obj.agents, 1) + 1, 1), NaN(size(obj.agents, 1) + 1, size(obj.partitioningTimes, 1) - 1)];
% Create initial partitioning
obj = obj.partition();
% Set up plots showing initialized state
[obj, f] = obj.plot();
obj = obj.plot();
end

View File

@@ -11,15 +11,28 @@ classdef miSim
obstacles = cell(0, 1); % geometries that define obstacles within the domain
agents = cell(0, 1); % agents that move within the domain
adjacency = NaN; % Adjacency matrix representing communications network graph
sensorPerformanceMinimum = 1e-6; % minimum sensor performance to allow assignment of a point in the domain to a partition
partitioning = NaN;
performance = NaN; % current cumulative sensor performance
fPerf; % performance plot figure
end
properties (Access = private)
% Sim
t = NaN; % current sim time
perf; % sensor performance timeseries array
times;
partitioningTimes;
% Plot objects
f = firstPlotSetup(); % main plotting tiled layout figure
connectionsPlot; % objects for lines connecting agents in spatial plots
graphPlot; % objects for abstract network graph plot
partitionPlot; % objects for partition plot
performancePlot; % objects for sensor performance plot
% Indicies for various plot types in the main tiled layout figure
spatialPlotIndices = [6, 4, 3, 2];
objectivePlotIndices = [6, 4];
@@ -28,17 +41,17 @@ classdef miSim
end
methods (Access = public)
[obj, f] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
[obj, f] = run(obj, f);
[obj] = partition(obj);
[obj] = updateAdjacency(obj);
[obj, f] = plot(obj);
[obj, f] = plotConnections(obj, ind, f);
[obj, f] = plotPartitions(obj, ind, f);
[obj, f] = plotGraph(obj, ind, f);
[obj, f] = updatePlots(obj, f, updatePartitions);
[obj] = initialize(obj, domain, objective, agents, timestep, partitoningFreq, maxIter, obstacles);
[obj] = run(obj);
[obj] = partition(obj);
[obj] = updateAdjacency(obj);
[obj] = plot(obj);
[obj] = plotConnections(obj);
[obj] = plotPartitions(obj);
[obj] = plotGraph(obj);
[obj] = updatePlots(obj, updatePartitions);
end
methods (Access = private)
[v] = setupVideoWriter(obj);
end
end
end

View File

@@ -9,17 +9,33 @@ function obj = partition(obj)
% Assess sensing performance of each agent at each sample point
% in the domain
agentPerformances = cellfun(@(x) reshape(x.sensorModel.sensorPerformance(x.pos, x.pan, x.tilt, [obj.objective.X(:), obj.objective.Y(:), zeros(size(obj.objective.X(:)))]), size(obj.objective.X)), obj.agents, 'UniformOutput', false);
agentPerformances{end + 1} = obj.sensorPerformanceMinimum * ones(size(agentPerformances{end})); % add additional layer to represent the threshold that has to be cleared for assignment to any partiton
agentPerformances = cat(3, agentPerformances{:});
% Get highest performance value at each point
[~, idx] = max(agentPerformances, [], 3);
% Collect agent indices in the same way
% Collect agent indices in the same way as performance
agentInds = cellfun(@(x) x.index * ones(size(obj.objective.X)), obj.agents, 'UniformOutput', false);
agentInds{end + 1} = zeros(size(agentInds{end})); % index for no assignment
agentInds = cat(3, agentInds{:});
% Get highest performing agent's index
[m,n,~] = size(agentInds);
[i,j] = ndgrid(1:m, 1:n);
obj.partitioning = agentInds(sub2ind(size(agentInds), i, j, idx));
% Use highest performing agent's index to form partitions
[m, n, ~] = size(agentInds);
[jj, kk] = ndgrid(1:m, 1:n);
obj.partitioning = agentInds(sub2ind(size(agentInds), jj, kk, idx));
% Get individual agent sensor performance
nowIdx = [0; obj.partitioningTimes] == obj.t;
if isnan(obj.t)
nowIdx = 1;
end
for ii = 1:size(obj.agents, 1)
idx = obj.partitioning == ii;
agentPerformance = squeeze(agentPerformances(:, :, ii));
obj.perf(ii, nowIdx) = sum(agentPerformance(idx) .* obj.objective.values(idx));
end
% Current total performance
obj.perf(end, nowIdx) = sum(obj.perf(1:(end - 1), nowIdx));
end

View File

@@ -1,41 +1,43 @@
function [obj, f] = plot(obj)
function obj = plot(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Plot domain
[obj.domain, f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
[obj.domain, obj.f] = obj.domain.plotWireframe(obj.spatialPlotIndices);
% Plot obstacles
for ii = 1:size(obj.obstacles, 1)
[obj.obstacles{ii}, f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, f);
[obj.obstacles{ii}, obj.f] = obj.obstacles{ii}.plotWireframe(obj.spatialPlotIndices, obj.f);
end
% Plot objective gradient
f = obj.domain.objective.plot(obj.objectivePlotIndices, f);
obj.f = obj.domain.objective.plot(obj.objectivePlotIndices, obj.f);
% Plot agents and their collision geometries
for ii = 1:size(obj.agents, 1)
[obj.agents{ii}, f] = obj.agents{ii}.plot(obj.spatialPlotIndices, f);
[obj.agents{ii}, obj.f] = obj.agents{ii}.plot(obj.spatialPlotIndices, obj.f);
end
% Plot communication links
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
obj = obj.plotConnections();
% Plot abstract network graph
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
obj = obj.plotGraph();
% Plot domain partitioning
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
obj = obj.plotPartitions();
% Enforce plot limits
for ii = 1:size(obj.spatialPlotIndices, 2)
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
end
% Plot performance
obj = obj.plotPerformance();
end

View File

@@ -1,12 +1,9 @@
function [obj, f] = plotConnections(obj, ind, f)
function obj = plotConnections(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
ind (1, :) double = NaN;
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Iterate over lower triangle off-diagonal region of the
@@ -24,20 +21,20 @@ function [obj, f] = plotConnections(obj, ind, f)
X = X'; Y = Y'; Z = Z';
% Plot the connections
if isnan(ind)
hold(f.CurrentAxes, "on");
o = plot3(f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
hold(f.CurrentAxes, "off");
if isnan(obj.spatialPlotIndices)
hold(obj.f.CurrentAxes, "on");
o = plot3(obj.f.CurrentAxes, X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
hold(obj.f.CurrentAxes, "off");
else
hold(f.Children(1).Children(ind(1)), "on");
o = plot3(f.Children(1).Children(ind(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
hold(f.Children(1).Children(ind(1)), "off");
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), "on");
o = plot3(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), X, Y, Z, 'Color', 'g', 'LineWidth', 2, 'LineStyle', '--');
hold(obj.f.Children(1).Children(obj.spatialPlotIndices(1)), "off");
end
% Copy to other plots
if size(ind, 2) > 1
for ii = 2:size(ind, 2)
o = [o, copyobj(o(:, 1), f.Children(1).Children(ind(ii)))];
if size(obj.spatialPlotIndices, 2) > 1
for ii = 2:size(obj.spatialPlotIndices, 2)
o = [o, copyobj(o(:, 1), obj.f.Children(1).Children(obj.spatialPlotIndices(ii)))];
end
end

View File

@@ -1,29 +1,26 @@
function [obj, f] = plotGraph(obj, ind, f)
function obj = plotGraph(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
ind (1, :) double = NaN;
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Form graph from adjacency matrix
G = graph(obj.adjacency, 'omitselfloops');
% Plot graph object
if isnan(ind)
hold(f.CurrentAxes, 'on');
o = plot(f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
hold(f.CurrentAxes, 'off');
if isnan(obj.networkGraphIndex)
hold(obj.f.CurrentAxes, 'on');
o = plot(obj.f.CurrentAxes, G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
hold(obj.f.CurrentAxes, 'off');
else
hold(f.Children(1).Children(ind(1)), 'on');
o = plot(f.Children(1).Children(ind(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
hold(f.Children(1).Children(ind(1)), 'off');
if size(ind, 2) > 1
hold(obj.f.Children(1).Children(obj.networkGraphIndex(1)), 'on');
o = plot(obj.f.Children(1).Children(obj.networkGraphIndex(1)), G, 'LineStyle', '--', 'EdgeColor', 'g', 'NodeColor', 'k', 'LineWidth', 2);
hold(obj.f.Children(1).Children(obj.networkGraphIndex(1)), 'off');
if size(obj.networkGraphIndex, 2) > 1
for ii = 2:size(ind, 2)
o = [o; copyobj(o(1), f.Children(1).Children(ind(ii)))];
o = [o; copyobj(o(1), obj.f.Children(1).Children(obj.networkGraphIndex(ii)))];
end
end
end

View File

@@ -1,25 +1,22 @@
function [obj, f] = plotPartitions(obj, ind, f)
function obj = plotPartitions(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
ind (1, :) double = NaN;
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
if isnan(ind)
hold(f.CurrentAxes, 'on');
o = imagesc(f.CurrentAxes, obj.partitioning);
hold(f.CurrentAxes, 'off');
if isnan(obj.partitionGraphIndex)
hold(obj.f.CurrentAxes, 'on');
o = imagesc(obj.f.CurrentAxes, obj.partitioning);
hold(obj.f.CurrentAxes, 'off');
else
hold(f.Children(1).Children(ind(1)), 'on');
o = imagesc(f.Children(1).Children(ind(1)), obj.partitioning);
hold(f.Children(1).Children(ind(1)), 'on');
if size(ind, 2) > 1
hold(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), 'on');
o = imagesc(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), obj.partitioning);
hold(obj.f.Children(1).Children(obj.partitionGraphIndex(1)), 'on');
if size(obj.partitionGraphIndex, 2) > 1
for ii = 2:size(ind, 2)
o = [o, copyobj(o(1), f.Children(1).Children(ind(ii)))];
o = [o, copyobj(o(1), obj.f.Children(1).Children(obj.partitionGraphIndex(ii)))];
end
end
end

36
@miSim/plotPerformance.m Normal file
View File

@@ -0,0 +1,36 @@
function obj = plotPerformance(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
end
axes(obj.fPerf);
title(obj.fPerf.Children(1), "Sensor Performance");
xlabel(obj.fPerf.Children(1), 'Time (s)');
ylabel(obj.fPerf.Children(1), 'Sensor Performance');
grid(obj.fPerf.Children(1), 'on');
% Plot current cumulative performance
hold(obj.fPerf.Children(1), 'on');
o = plot(obj.fPerf.Children(1), obj.perf(end, :));
hold(obj.fPerf.Children(1), 'off');
% Plot current agent performance
for ii = 1:(size(obj.perf, 1) - 1)
hold(obj.fPerf.Children(1), 'on');
o = [o; plot(obj.fPerf.Children(1), obj.perf(ii, :))];
hold(obj.fPerf.Children(1), 'off');
end
% Add legend
agentStrings = repmat("Agent %d", size(obj.perf, 1) - 1, 1);
for ii = 1:size(agentStrings, 1)
agentStrings(ii) = sprintf(agentStrings(ii), ii);
end
agentStrings = ["Total"; agentStrings];
legend(obj.fPerf.Children(1), agentStrings, 'Location', 'northwest');
obj.performancePlot = o;
end

View File

@@ -1,32 +1,24 @@
function [obj, f] = run(obj, f)
function [obj] = run(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Create axes if they don't already exist
f = firstPlotSetup(f);
% Set up times to iterate over
times = linspace(0, obj.timestep * obj.maxIter, obj.maxIter+1)';
partitioningTimes = times(obj.partitioningFreq:obj.partitioningFreq:size(times, 1));
% Start video writer
v = obj.setupVideoWriter();
v.open();
for ii = 1:size(times, 1)
steady = 0;
for ii = 1:size(obj.times, 1)
% Display current sim time
t = times(ii);
fprintf("Sim Time: %4.2f (%d/%d)\n", t, ii, obj.maxIter)
obj.t = obj.times(ii);
fprintf("Sim Time: %4.2f (%d/%d)\n", obj.t, ii, obj.maxIter + 1);
% Check if it's time for new partitions
updatePartitions = false;
if ismember(t, partitioningTimes)
if ismember(obj.t, obj.partitioningTimes)
updatePartitions = true;
obj = obj.partition();
end
@@ -37,16 +29,16 @@ function [obj, f] = run(obj, f)
end
% Update adjacency matrix
obj = obj.updateAdjacency;
obj = obj.updateAdjacency();
% Update plots
[obj, f] = obj.updatePlots(f, updatePartitions);
obj = obj.updatePlots(updatePartitions);
% Write frame in to video
I = getframe(f);
I = getframe(obj.f);
v.writeVideo(I);
end
% Close video file
v.close();
end
end

View File

@@ -9,7 +9,7 @@ function v = setupVideoWriter(obj)
if ispc || ismac
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'MPEG-4');
elseif isunix
v = VideoWriter(fullfile('sandbox', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
v = VideoWriter(fullfile('.', strcat(string(datetime('now'), 'yyyy_MM_dd_HH_mm_ss'), '_miSimHist')), 'Motion JPEG AVI');
end
v.FrameRate = 1 / obj.timestep;

View File

@@ -1,12 +1,10 @@
function [obj, f] = updatePlots(obj, f, updatePartitions)
function [obj] = updatePlots(obj, updatePartitions)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')} = figure;
updatePartitions (1, 1) logical = false;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'miSim')};
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Update agent positions, collision geometries
@@ -20,24 +18,37 @@ function [obj, f] = updatePlots(obj, f, updatePartitions)
% Update agent connections plot
delete(obj.connectionsPlot);
[obj, f] = obj.plotConnections(obj.spatialPlotIndices, f);
obj = obj.plotConnections();
% Update network graph plot
delete(obj.graphPlot);
[obj, f] = obj.plotGraph(obj.networkGraphIndex, f);
obj = obj.plotGraph();
% Update partitioning plot
if updatePartitions
delete(obj.partitionPlot);
[obj, f] = obj.plotPartitions(obj.partitionGraphIndex, f);
obj = obj.plotPartitions();
end
% reset plot limits to fit domain
for ii = 1:size(obj.spatialPlotIndices, 2)
xlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
ylim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim(f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
xlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(1), obj.domain.maxCorner(1)]);
ylim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(2), obj.domain.maxCorner(2)]);
zlim(obj.f.Children(1).Children(obj.spatialPlotIndices(ii)), [obj.domain.minCorner(3), obj.domain.maxCorner(3)]);
end
drawnow;
% Update performance plot
if updatePartitions
% find index corresponding to the current time
nowIdx = [0; obj.partitioningTimes] == obj.t;
nowIdx = find(nowIdx);
% Re-normalize performance plot
normalizingFactor = 1/max(obj.perf(end, 1:nowIdx));
obj.performancePlot(1).YData(1:nowIdx) = obj.perf(end, 1:nowIdx) * normalizingFactor;
for ii = 2:size(obj.performancePlot, 1)
obj.performancePlot(ii).YData(1:nowIdx) = obj.perf(ii - 1, 1:nowIdx) * normalizingFactor;
end
end
end

View File

@@ -1,15 +1,17 @@
function obj = initialize(obj, objectiveFunction, domain, discretizationStep)
function obj = initialize(obj, objectiveFunction, domain, discretizationStep, protectedRange)
arguments (Input)
obj (1,1) {mustBeA(obj, 'sensingObjective')};
objectiveFunction (1, 1) {mustBeA(objectiveFunction, 'function_handle')};
domain (1, 1) {mustBeGeometry};
discretizationStep (1, 1) double = 1;
protectedRange (1, 1) double = 1;
end
arguments (Output)
obj (1,1) {mustBeA(obj, 'sensingObjective')};
end
obj.groundAlt = domain.minCorner(3);
obj.protectedRange = protectedRange;
% Extract footprint limits
xMin = min(domain.footprint(:, 1));
@@ -26,8 +28,13 @@ function obj = initialize(obj, objectiveFunction, domain, discretizationStep)
% Evaluate function over grid points
obj.objectiveFunction = objectiveFunction;
obj.values = reshape(obj.objectiveFunction(obj.X, obj.Y), size(obj.X));
% Normalize
obj.values = obj.values ./ max(obj.values, [], "all");
% store ground position
idx = obj.values == max(obj.values, [], "all");
idx = obj.values == 1;
obj.groundPos = [obj.X(idx), obj.Y(idx)];
assert(domain.distance([obj.groundPos, domain.center(3)]) > protectedRange, "Domain is crowding the sensing objective")
end

View File

@@ -1,9 +1,9 @@
function obj = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep)
function obj = initializeRandomMvnpdf(obj, domain, discretizationStep, protectedRange)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
domain (1, 1) {mustBeGeometry};
protectedRange (1, 1) double = 1;
discretizationStep (1, 1) double = 1;
protectedRange (1, 1) double = 1;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'sensingObjective')};
@@ -23,5 +23,5 @@ function obj = initializeRandomMvnpdf(obj, domain, protectedRange, discretizatio
objectiveFunction = @(x, y) mvnpdf([x(:), y(:)], mu, sig);
% Regular initialization
obj = obj.initialize(objectiveFunction, domain, discretizationStep);
obj = obj.initialize(objectiveFunction, domain, discretizationStep, protectedRange);
end

View File

@@ -9,11 +9,12 @@ classdef sensingObjective
X = [];
Y = [];
values = [];
protectedRange = 1; % keep obstacles from crowding objective
end
methods (Access = public)
[obj] = initialize(obj, objectiveFunction, domain, discretizationStep);
[obj] = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep);
[obj] = initialize(obj, objectiveFunction, domain, discretizationStep, protectedRange);
[obj] = initializeRandomMvnpdf(obj, domain, protectedRange, discretizationStep, protectedRange);
[f ] = plot(obj, ind, f);
end
end

View File

@@ -1,17 +1,43 @@
function [obj] = initializeRandom(obj, minDimension, tag, label)
function [obj] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
minDimension (1, 1) double = 10;
tag (1, 1) REGION_TYPE = REGION_TYPE.INVALID;
label (1, 1) string = "";
minDimension (1, 1) double = 10;
maxDimension (1, 1) double= 20;
domain (1, 1) {mustBeGeometry} = rectangularPrism;
end
arguments (Output)
obj (1, 1) {mustBeA(obj, 'rectangularPrism')};
end
% Produce random bounds
L = ceil(minDimension + rand * minDimension);
bounds = [zeros(1, 3); L * ones(1, 3)];
% Produce random bounds based on region type
if tag == REGION_TYPE.DOMAIN
% Domain
L = ceil(minDimension + rand * (maxDimension - minDimension));
bounds = [zeros(1, 3); L * ones(1, 3)];
else
% Obstacle
% Produce a corners that are contained in the domain
ii = 0;
candidateMaxCorner = domain.maxCorner + ones(1, 3);
candidateMinCorner = domain.minCorner - ones(1, 3);
% Continue until the domain contains the obstacle without crowding the objective
while ~domain.contains(candidateMaxCorner) || all(domain.objective.groundPos + domain.objective.protectedRange >= candidateMinCorner(1:2), 2) && all(domain.objective.groundPos - domain.objective.protectedRange <= candidateMaxCorner(1:2), 2)
if ii == 0 || ii > 10
candidateMinCorner = domain.random();
candidateMinCorner(3) = 0; % bind to floor
ii = 1;
end
candidateMaxCorner = candidateMinCorner + minDimension + rand(1, 3) * (maxDimension - minDimension);
ii = ii + 1;
end
bounds = [candidateMinCorner; candidateMaxCorner;];
end
% Regular initialization
obj = obj.initialize(bounds, tag, label);

View File

@@ -28,7 +28,7 @@ classdef rectangularPrism
methods (Access = public)
[obj ] = initialize(obj, bounds, tag, label, objectiveFunction, discretizationStep);
[obj ] = initializeRandom(obj, tag, label);
[obj ] = initializeRandom(obj, tag, label, minDimension, maxDimension, domain);
[r ] = random(obj);
[c ] = contains(obj, pos);
[d ] = distance(obj, pos);

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensingModels" Type="Relative"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="420d04e4-3880-4a45-8609-11cb30d87302" type="Reference"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info Ref="sensorModels" Type="Relative"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="d143c27d-6824-4569-9093-8150b60976cb" type="Reference"/>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="test"/>
</Category>
</Info>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="test_sigmoidSensor.m" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="plotPerformance.m" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sensorModels" type="File"/>

View File

@@ -1,2 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="sensingModels" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="tiltMembership.m" type="File"/>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="plotParameters.m" type="File"/>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -0,0 +1,2 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info location="distanceMembership.m" type="File"/>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<Info>
<Category UUID="FileClassCategory">
<Label UUID="design"/>
</Category>
</Info>

View File

@@ -0,0 +1,10 @@
function x = distanceMembership(obj, d)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
d (:, 1) double;
end
arguments (Output)
x (:, 1) double;
end
x = 1 - (1 ./ (1 + exp(-obj.betaDist .* (abs(d) - obj.alphaDist))));
end

View File

@@ -11,7 +11,7 @@ function obj = initialize(obj, alphaDist, betaDist, alphaPan, betaPan, alphaTilt
arguments (Output)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')}
end
obj.alphaDist = alphaDist;
obj.betaDist = betaDist;
obj.alphaPan = alphaPan;

View File

@@ -0,0 +1,42 @@
function f = plotParameters(obj)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
end
arguments (Output)
f (1, 1) {mustBeA(f, 'matlab.ui.Figure')};
end
% Distance and tilt sample points
d = 0:(obj.alphaDist / 100):(2*obj.alphaDist);
t = -90:1:90;
% Sample membership functions
d_x = obj.distanceMembership(d);
t_x = obj.tiltMembership(t);
% Plot resultant sigmoid curves
f = figure;
tiledlayout(f, 2, 1, "TileSpacing", "tight", "Padding", "compact");
% Distance
nexttile(1, [1, 1]);
grid("on");
title("Distance Membership Sigmoid");
xlabel("Distance (m)");
ylabel("Membership");
hold('on');
plot(d, d_x, 'LineWidth', 2);
hold('off');
ylim([0, 1]);
% Tilt
nexttile(2, [1, 1]);
grid("on");
title("Tilt Membership Sigmoid");
xlabel("Tilt (deg)");
ylabel("Membership");
hold('on');
plot(t, t_x, 'LineWidth', 2);
hold('off');
ylim([0, 1]);
end

View File

@@ -10,14 +10,16 @@ function value = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos
value (:, 1) double;
end
% compute direct distance and distance projected onto the ground
d = vecnorm(agentPos - targetPos, 2, 2); % distance from sensor to target
x = vecnorm(agentPos(1:2) - targetPos(:, 1:2), 2, 2); % distance from sensor nadir to target nadir (i.e. distance ignoring height difference)
tiltAngle = atan2(targetPos(:, 3) - agentPos(3), x) - agentTilt;
% compute tilt angle
tiltAngle = (180 - atan2d(x, targetPos(:, 3) - agentPos(3))) - agentTilt; % degrees
% Membership functions
mu_d = 1 - (1 ./ (1 + exp(-obj.betaDist .* (d - obj.alphaDist)))); % distance
mu_p = 1; % pan
mu_t = (1 ./ (1 + exp(-obj.betaPan .* (tiltAngle + obj.alphaPan)))) - (1 ./ (1 + exp(-obj.betaPan .* (tiltAngle - obj.alphaPan)))); % tilt
mu_d = obj.distanceMembership(d);
mu_t = obj.tiltMembership(tiltAngle);
value = mu_d .* mu_p .* mu_t * 1e12;
value = mu_d .* mu_t; % assume pan membership is always 1
end

View File

@@ -5,7 +5,7 @@ classdef sigmoidSensor
betaDist = NaN;
alphaPan = NaN;
betaPan = NaN;
alphaTilt = NaN;
alphaTilt = NaN; % degrees
betaTilt = NaN;
end
@@ -13,5 +13,10 @@ classdef sigmoidSensor
[obj] = initialize(obj, alphaDist, betaDist, alphaPan, betaPan, alphaTilt, betaTilt);
[values, positions] = sense(obj, agent, sensingObjective, domain, partitioning);
[value] = sensorPerformance(obj, agentPos, agentPan, agentTilt, targetPos);
[f] = plotParameters(obj);
end
methods (Access = private)
x = distanceMembership(obj, d);
x = tiltMembership(obj, t);
end
end

View File

@@ -0,0 +1,10 @@
function x = tiltMembership(obj, t)
arguments (Input)
obj (1, 1) {mustBeA(obj, 'sigmoidSensor')};
t (:, 1) double; % degrees
end
arguments (Output)
x (:, 1) double;
end
x = (1 ./ (1 + exp(-obj.betaTilt .* (t + obj.alphaTilt)))) - (1 ./ (1 + exp(-obj.betaTilt .* (t - obj.alphaTilt))));
end

View File

@@ -1,5 +1,6 @@
classdef test_miSim < matlab.unittest.TestCase
properties (Access = private)
% System under test
testClass = miSim;
% Sim
@@ -24,8 +25,8 @@ classdef test_miSim < matlab.unittest.TestCase
objective = sensingObjective;
% Agents
minAgents = 3; % Minimum number of agents to be randomly generated
maxAgents = 9; % Maximum number of agents to be randomly generated
minAgents = 2; % Minimum number of agents to be randomly generated
maxAgents = 4; % Maximum number of agents to be randomly generated
sensingLength = 0.05; % length parameter used by sensing function
agents = cell(0, 1);
@@ -34,8 +35,18 @@ classdef test_miSim < matlab.unittest.TestCase
maxCollisionRange = 0.5; % Maximum randomly generated collision geometry size
collisionRanges = NaN;
% Sensing
betaDistMin = 3;
betaDistMax = 15;
betaTiltMin = 3;
betaTiltMax = 15;
alphaDistMin = 2.5;
alphaDistMax = 3;
alphaTiltMin = 15; % degrees
alphaTiltMax = 30; % degrees
% Communications
comRange = 5; % Maximum range between agents that forms a communications link
comRange = 8; % Maximum range between agents that forms a communications link
end
% Setup for each test
@@ -43,15 +54,13 @@ classdef test_miSim < matlab.unittest.TestCase
% Generate a random domain
function tc = setDomain(tc)
% random integer-dimensioned cubic domain
tc.domain = tc.domain.initializeRandom(tc.minDimension, REGION_TYPE.DOMAIN, "Domain");
tc.domain = tc.domain.initializeRandom(REGION_TYPE.DOMAIN, "Domain", tc.minDimension);
% Random bivariate normal PDF objective
tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.protectedRange, tc.discretizationStep);
tc.domain.objective = tc.domain.objective.initializeRandomMvnpdf(tc.domain, tc.discretizationStep, tc.protectedRange);
end
% Instantiate agents
function tc = setAgents(tc)
% Agents will be initialized under different parameters in
% individual test cases
% Agents will be initialized under different parameters in individual test cases
% Instantiate a random number of agents according to parameters
for ii = 1:randi([tc.minAgents, tc.maxAgents])
tc.agents{ii, 1} = agent;
@@ -73,52 +82,14 @@ classdef test_miSim < matlab.unittest.TestCase
for ii = 1:size(tc.obstacles, 1)
badCandidate = true;
while badCandidate
% Instantiate a rectangular prism obstacle
% Instantiate a rectangular prism obstacle inside the domain
tc.obstacles{ii} = rectangularPrism;
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
% Randomly generate min corner for the obstacle
candidateMinCorner = tc.domain.random();
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
% Randomly select a corresponding maximum corner that
% satisfies min/max obstacle size specifications
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
% Initialize obstacle
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
% Check if the obstacle intersects with any existing
% obstacles
violation = false;
for kk = 1:(ii - 1)
if geometryIntersects(tc.obstacles{kk}, tc.obstacles{ii})
violation = true;
break;
end
% Check if the obstacle collides with an existing obstacle
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
badCandidate = false;
end
if violation
continue;
end
% Make sure that the obstacles are fully contained by
% the domain
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
continue;
end
% Make sure that the obstacles don't cover the sensing
% objective
if obstacleCoversObjective(tc.domain.objective, tc.obstacles{ii})
continue;
end
% Make sure that the obstacles aren't too close to the
% sensing objective
if obstacleCrowdsObjective(tc.domain.objective, tc.obstacles{ii}, tc.protectedRange)
continue;
end
badCandidate = false;
end
end
@@ -133,9 +104,11 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = 1 + rand * 3; % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -179,7 +152,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize candidate agent sensor model
sensor = sigmoidSensor;
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize candidate agent
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
@@ -230,7 +203,7 @@ classdef test_miSim < matlab.unittest.TestCase
end
% Initialize the simulation
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
end
function misim_run(tc)
% randomly create obstacles
@@ -241,52 +214,14 @@ classdef test_miSim < matlab.unittest.TestCase
for ii = 1:size(tc.obstacles, 1)
badCandidate = true;
while badCandidate
% Instantiate a rectangular prism obstacle
% Instantiate a rectangular prism obstacle inside the domain
tc.obstacles{ii} = rectangularPrism;
tc.obstacles{ii} = tc.obstacles{ii}.initializeRandom(REGION_TYPE.OBSTACLE, sprintf("Obstacle %d", ii), tc.minObstacleSize, tc.maxObstacleSize, tc.domain);
% Randomly generate min corner for the obstacle
candidateMinCorner = tc.domain.random();
candidateMinCorner = [candidateMinCorner(1:2), 0]; % bind obstacles to floor of domain
% Randomly select a corresponding maximum corner that
% satisfies min/max obstacle size specifications
candidateMaxCorner = candidateMinCorner + tc.minObstacleSize + rand(1, 3) * (tc.maxObstacleSize - tc.minObstacleSize);
% Initialize obstacle
tc.obstacles{ii} = tc.obstacles{ii}.initialize([candidateMinCorner; candidateMaxCorner], REGION_TYPE.OBSTACLE, sprintf("Column obstacle %d", ii));
% Check if the obstacle intersects with any existing
% obstacles
violation = false;
for kk = 1:(ii - 1)
if geometryIntersects(tc.obstacles{kk}, tc.obstacles{ii})
violation = true;
break;
end
% Check if the obstacle collides with an existing obstacle
if ~tc.obstacleCollisionCheck(tc.obstacles(1:(ii - 1)), tc.obstacles{ii})
badCandidate = false;
end
if violation
continue;
end
% Make sure that the obstacles are fully contained by
% the domain
if ~domainContainsObstacle(tc.domain, tc.obstacles{ii})
continue;
end
% Make sure that the obstacles don't cover the sensing
% objective
if obstacleCoversObjective(tc.domain.objective, tc.obstacles{ii})
continue;
end
% Make sure that the obstacles aren't too close to the
% sensing objective
if obstacleCrowdsObjective(tc.domain.objective, tc.obstacles{ii}, tc.protectedRange)
continue;
end
badCandidate = false;
end
end
@@ -301,9 +236,11 @@ classdef test_miSim < matlab.unittest.TestCase
if ii == 1
while agentsCrowdObjective(tc.domain.objective, candidatePos, mean(tc.domain.dimensions) / 2)
candidatePos = tc.domain.random();
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
else
candidatePos = tc.agents{randi(ii - 1)}.pos + sign(randn([1, 3])) .* (rand(1, 3) .* tc.comRange/sqrt(2));
candidatePos(3) = min([tc.domain.maxCorner(3) * 0.95, 0.5 + rand * (tc.alphaDistMax * (1.1) - 0.5)]); % place agents at decent altitudes for sensing
end
% Make sure that the candidate position is within the
@@ -347,7 +284,7 @@ classdef test_miSim < matlab.unittest.TestCase
% Initialize candidate agent sensor model
sensor = sigmoidSensor;
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Initialize candidate agent
newAgent = tc.agents{ii}.initialize(candidatePos, zeros(1,3), 0, 0, candidateGeometry, sensor, @gradientAscent, tc.comRange, ii, sprintf("Agent %d", ii));
@@ -398,10 +335,10 @@ classdef test_miSim < matlab.unittest.TestCase
end
% Initialize the simulation
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter, tc.obstacles);
% Run simulation loop
[tc.testClass, f] = tc.testClass.run(f);
tc.testClass = tc.testClass.run();
end
function test_basic_partitioning(tc)
% place agents a fixed distance +/- X from the domain's center
@@ -411,25 +348,81 @@ classdef test_miSim < matlab.unittest.TestCase
tc.domain = tc.domain.initialize([zeros(1, 3); 10 * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2), eye(2)), tc.domain.footprint, tc.domain.minCorner(3), tc.discretizationStep);
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2)), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
dh = [0,0,-1]; % bias agent altitude from domain center
geometry1 = rectangularPrism;
geometry2 = geometry1;
geometry1 = geometry1.initialize([tc.domain.center + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
geometry2 = geometry2.initialize([tc.domain.center - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
geometry1 = geometry1.initialize([tc.domain.center + dh + [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh + [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
geometry2 = geometry2.initialize([tc.domain.center + dh - [d, 0, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [d, 0, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 2));
% Initialize agent sensor model
sensor = sigmoidSensor;
sensor = sensor.initialize(2.5, 3, NaN, NaN, deg2rad(15), 3);
% Homogeneous sensor model parameters
sensor = sensor.initialize(2.75, 9, NaN, NaN, 22.5, 9);
% Heterogeneous sensor model parameters
% sensor = sensor.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
% Plot sensor parameters (optional)
% f = sensor.plotParameters();
% Initialize agents
tc.agents = {agent; agent};
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
tc.agents{1} = tc.agents{1}.initialize(tc.domain.center + dh + [d, 0, 0], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3*d, 1, sprintf("Agent %d", 1));
tc.agents{2} = tc.agents{2}.initialize(tc.domain.center + dh - [d, 0, 0], zeros(1,3), 0, 0, geometry2, sensor, @gradientAscent, 3*d, 2, sprintf("Agent %d", 2));
% Optional third agent along the +Y axis
geometry3 = rectangularPrism;
geometry3 = geometry3.initialize([tc.domain.center + dh - [0, d, 0] - tc.collisionRanges(1) * ones(1, 3); tc.domain.center + dh - [0, d, 0] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 3));
tc.agents{3} = agent;
tc.agents{3} = tc.agents{3}.initialize(tc.domain.center + dh - [0, d, 0], zeros(1, 3), 0, 0, geometry3, sensor, @gradientAscent, 3*d, 3, sprintf("Agent %d", 3));
% Initialize the simulation
[tc.testClass, f] = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
function test_single_partition(tc)
% make basic domain
l = 10; % domain size
tc.domain = tc.domain.initialize([zeros(1, 3); l * ones(1, 3)], REGION_TYPE.DOMAIN, "Domain");
% make basic sensing objective
tc.domain.objective = tc.domain.objective.initialize(@(x, y) mvnpdf([x(:), y(:)], tc.domain.center(1:2) + rand(1, 2) * 6 - 3), tc.domain, tc.discretizationStep, tc.protectedRange);
% Initialize agent collision geometry
geometry1 = rectangularPrism;
geometry1 = geometry1.initialize([[tc.domain.center(1:2), 3] - tc.collisionRanges(1) * ones(1, 3); [tc.domain.center(1:2), 3] + tc.collisionRanges(1) * ones(1, 3)], REGION_TYPE.COLLISION, sprintf("Agent %d collision volume", 1));
% Initialize agent sensor model
sensor = sigmoidSensor;
% Homogeneous sensor model parameters
% sensor = sensor.initialize(2.5666, 5.0807, NaN, NaN, 20.8614, 13); % 13
alphaDist = l/2; % half of domain length/width
sensor = sensor.initialize(alphaDist, 3, NaN, NaN, 20, 3);
% Plot sensor parameters (optional)
f = sensor.plotParameters();
% Initialize agents
tc.agents = {agent};
tc.agents{1} = tc.agents{1}.initialize([tc.domain.center(1:2), 3], zeros(1,3), 0, 0, geometry1, sensor, @gradientAscent, 3, 1, sprintf("Agent %d", 1));
% Initialize the simulation
tc.testClass = tc.testClass.initialize(tc.domain, tc.domain.objective, tc.agents, tc.timestep, tc.partitoningFreq, tc.maxIter);
close(tc.testClass.fPerf);
end
end
methods
function c = obstacleCollisionCheck(~, obstacles, obstacle)
% Check if the obstacle intersects with any other obstacles
c = false;
for ii = 1:size(obstacles, 1)
if geometryIntersects(obstacles{ii}, obstacle)
c = true;
end
end
end
end
end

62
test/test_sigmoidSensor.m Normal file
View File

@@ -0,0 +1,62 @@
classdef test_sigmoidSensor < matlab.unittest.TestCase
properties (Access = private)
% System under test
testClass = sigmoidSensor;
% Domain
domain = rectangularPrism;
% Sensor parameter ranges
betaDistMin = 3;
betaDistMax = 15;
betaTiltMin = 3;
betaTiltMax = 15;
alphaDistMin = 2.5;
alphaDistMax = 3;
alphaTiltMin = 15; % degrees
alphaTiltMax = 30; % degrees
end
methods (TestMethodSetup)
function tc = setup(tc)
% Reinitialize sensor with random parameters
tc.testClass = sigmoidSensor;
tc.testClass = tc.testClass.initialize(tc.alphaDistMin + rand * (tc.alphaDistMax - tc.alphaDistMin), tc.betaDistMin + rand * (tc.betaDistMax - tc.betaDistMin), NaN, NaN, tc.alphaTiltMin + rand * (tc.alphaTiltMax - tc.alphaTiltMin), tc.betaTiltMin + rand * (tc.betaTiltMax - tc.betaTiltMin));
end
end
methods (Test)
% Test methods
function test_sensorPerformance(tc)
tc.testClass = sigmoidSensor;
alphaDist = 2.5;
betaDist = 3;
alphaTilt = 15; % degrees
betaTilt = 3;
h = 1e-6;
tc.testClass = tc.testClass.initialize(alphaDist, betaDist, NaN, NaN, alphaTilt, betaTilt);
% Plot (optional)
% tc.testClass.plotParameters();
% Anticipate perfect performance for a point directly below and
% extremely close
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [0, 0, 0]), 1, 'RelTol', 1e-3);
% It looks like mu_t can max out at really low values like 0.37
% when alphaTilt and betaTilt are small, which seems wrong
% Performance at nadir point, distance alphaDist should be 1/2 exactly
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, alphaDist], NaN, 0, [0, 0, 0]), 1/2);
% Performance at (almost) 0 distance, alphaTilt should be 1/2
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [tand(alphaTilt)*h, 0, 0]), 1/2, 'RelTol', 1e-3);
% Performance at great distance should be 0
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, 10], NaN, 0, [0, 0, 0]), 0, 'AbsTol', 1e-9);
% Performance at great tilt should be 0
tc.verifyEqual(tc.testClass.sensorPerformance([0, 0, h], NaN, 0, [5, 5, 0]), 0, 'AbsTol', 1e-9);
end
end
end